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Geographic Information Systems as Data Sharing 
Infrastructure for Clinical Data Warehouses
Daniel R. Harris*,†

Introduction: The sharing of patient location data is heavily regulated by laws that protect patient 
privacy and by institutional review boards that are designed to protect the rights and wellbeing of human 
subjects. Patient location data has incredible value for research due to environmental social determinants 
of health that heavily influence patient outcomes. The misalignment of sensitivity and utility creates a 
barrier for researchers that wish to understand the impact of neighborhood-level social determinants of 
health (SDOH) on health outcomes.
Objectives: We describe data warehousing solutions for the safe and ethical enhancement of patient 
location data; these enhancements will enable easier data sharing.
Methods: We deploy geographic information systems (GIS) as a complementary data warehousing service 
that imports patient addresses, processes the data, and returns results back to the warehouse for others 
to use and disseminate.
Results: We processed 1.3 million patients and added facets about their location to our data warehouse, 
where they may later be requested for research. We further added de-identified information about the 
demographics of patient locations from the United States Census Bureau, which assists researchers in 
understanding the impact of location-driven SDOH.
Conclusions: GIS support is a necessary component of a clinical data warehouse and sharing derived, 
de-identified data is both feasible and useful for research. Open-source software lowers the barrier of 
adoption and the cost associated with deriving these contextual data points.
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Introduction
Patient location data is both highly sensitive due to 
privacy concerns and highly valuable for research due to 
the influence of location on one’s health.1 Neighborhood-
level social determinants of health (SDOH), such as 
poverty percentages and unemployment rates, are known 
to influence health outcomes and access to healthcare.2–4 
Location and SDOH are also relevant for research studies 
on healthcare utilization as location impacts the supply, 
demand, and need for healthcare resources.4 Research 
suggests that a person’s zip code may be more relevant to 
health outcomes than their genetic code.5–8 A significant 
relationship exists between an individual’s zip code, 
income, and likelihood of trauma or unintentional 
injury.5 Chicago had a higher number of hot spots 
of COVID-19-related deaths in neighborhoods with 

higher numbers of racial or ethnic minority residents.9 
Significant differences in life expectancy are observed 
across neighborhoods with different racial demographics 
that are just a few miles apart, and partnerships between 
policy makers, healthcare providers, and researchers are 
needed to overcome these health disparities.6 Clinical 
data warehouses play a large role in this multi-pronged 
approach, in which environmental SDOH data, such as 
those publicly available from the US Census Bureau, are 
not necessarily available in the electronic health record 
but may be derived from patient addresses via geocoding 
and distributed to researchers and care providers.10,11

Patient addresses are prohibited from being improperly 
shared due to privacy protections mandated by the 
Health Insurance Portability and Accountability Act 
of 1996 (HIPAA). HIPAA’s “Safe Harbor” policy lists 18 
data element types, such as names and social security 
numbers, that must be removed to de-identify a data set 
for it to be free of patient protected health information; 
as a consequence, this de-identified data set contains less 
information and may have less utility.12 For the release of 
a patient’s geographic region, HIPAA requires a minimum 
population of at least 20,000 people per geographical unit 
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and specifically names zip code as the smallest permissible 
area; this rule is a source of confusion, and many interpret 
it as only being able to release the first three digits of a zip 
code.13 Aggregating to the first three digits increases the 
area covered and consequently increases the population. 
Adding to this confusion, new zip codes are created each 
year, and some may change over time. Between 2004 
and 2022, there were only 13 three-digit zip codes in the 
United States that were small enough to fall below the 
threshold of 20,000 people.12,13 De-identified data is freely 
sharable because of their inherit lack of protected health 
information, although there is still risk of re-identification.14 
Unlike protected health information, data that describes 
environmental SDOH for a given geographic region is 
publicly available and can be appropriately integrated 
into research projects. In a previous study, specific to a 
population living with substance use disorders, we linked 
geocoded patient addresses to reference spatial data on 
socioeconomic advantage, economic mobility, urban 
core opportunity, and mixed immigrant cohesion and 
accessibility; we observed significant differences between 
those with stimulant use disorder, opioid use disorder, 
and those with both.15

Patients may consent to have their protected health 
information shared with research studies, or institutional 
review boards may allow access to identifiable information 
for secondary data use if the proposed research poses 
minimal risk to the patients. Many academic medical 
centers have clinical data warehouses that support 
operations, research, and translational science goals.16,17 
Warehouse teams are typically part of the covered entity 
under HIPAA and can therefore operate directly with 
protected health information; this information originates 
from electronic health records and is ultimately stored in 
clinical data warehouses for a variety of purposes. We view 
integration of GIS expertise as a means to enhance the 
science of clinical data management;18 raw geospatial data 
is refinable into useful and sharable research data. This 
article outlines how geographic information systems (GIS) 
are pivotal for processing patient address data to support 
a variety of geospatial analytic tasks, such as deriving 
neighborhood-level SDOH by linking publicly available 
data to geocoded patient data.

Background
GIS tools are designed to create, store, manipulate, and 
analyze geographic data.19 Like many data-driven fields, 
the delineation of GIS as a tool (“geographic information 
systems”) or as a science (“geographic information 
science”) is an important distinction for research and 
GIScience as a scientific discipline has matured.19–22 GIS 
is important for healthcare as it helps us understand 
spatial relationships between patients, providers, and 
healthcare organizations.23 Furthermore, there is evidence 
that address data is useful for clinical data warehouses in 
supporting secondary use for research.10,11,24

The most common spatial data elements in clinical data 
warehouses are patient addresses, although locations of 
hospitals, clinics, pharmacies, or other ancillary services 
may also be relevant. Patient address data is typically 

semi-structured data that originate from the electronic 
health record; it usually contains two address lines for 
street, a city, a state, and a zip code. Advanced electronic 
health record systems may also have latitude and longitude 
coordinates to represent the address as a point on Earth. 
If the coordinates are not available in the source system, 
they may be calculated by processing the semi-structured 
address data with GIS tools.

Geocoding is the process of translating raw address 
data into geographic coordinates, such as latitude and 
longitude. As a result of the sensitive and protected nature 
of addresses, care must be taken in what GIS strategy is 
used to geocode the raw data. There are three types of 
geocoding strategies: “in-house” geocoding, geocoding 
web-services, and pass-through cloud services.25 “In-house” 
geocoding refers to any GIS solution deployed behind an 
institution’s firewall, where protected health information 
must remain. Geocoding web-services refer to any web-
based GIS solution that offers an application programming 
interface (API) that provides GIS functionality; because 
sensitive data is shared across entities, these APIs require 
a business associates agreement (BAA) that outline data 
sharing permissions and compliance measures. Pass-
through cloud services refer to leveraging existing BAAs 
for institutions that are already a customer of a cloud-
based provider, such as Azure and Amazon; the privacy 
protections are already accounted for by the original 
cloud-based agreement. For this paper, we focus on 
“in-house” geocoding as complementary infrastructure to 
an “in-house” clinical data warehouse. Our local warehouse 
is on-premises, and cost eliminated the viability of using 
geocoding APIs due to their charge-per-address request 
model. Furthermore, we focus on open-source technology 
to minimize the financial impact of adding GIS-related 
services to clinical data warehouses.

PostgreSQL is a freely available database management 
system and is popular in open-source projects.26 PostgreSQL 
has been shown to outperform competing platforms for 
geospatial tasks.27 PostGIS is an open-source extension for 
PostgreSQL that provides many foundational geospatial 
capabilities, such as storing spatial data, calculating 
distances, and intersecting points within geographic 
regions. We previously demonstrated that PostgreSQL 
with PostGIS outperformed a competing open-source 
geocoding tool, OpenStreetMap’s Nominatim.11 Our 
bench4gis tool enabled benchmarking of GIS performance 
by using big open data as reference data in which the local 
calculated coordinates can be compared to the coordinates 
in the source data.11 Using bench4gis, we determined that 
the accuracy of open-source geocoding was adequate for 
our data warehouse’s analytical needs.11

Methods
We deployed PostGIS to a physical PostgreSQL database 
server hosted in our enterprise data center; this “in-house” 
GIS resource is housed behind our private firewall where 
identified data is stored. We selected the PostGIS TIGER 
Geocoder which pulls its geospatial reference data from 
the US Census Bureau’s TIGER (Topologically Integrated 
Geographic Encoding and Referencing) database.28 This 
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reference data defines geographies used by the US Census 
Bureau and also was used as part of our geocoding process. 
We developed procedures for geocoding our patient table 
using PL/pgSQL, the programming language used by 
PostGIS and PostgreSQL.

We developed and automated extract, transform, and 
load (ETL) jobs that import patient address data from 
our warehouse, process the addresses with PostGIS to get 
coordinates (EPSG:4326) and other important geospatial 
features, and export the results back to the warehouse. 
This is visualized in Figure 1. We stored the results as part 
of the warehouse so that our team of data analysts could 
handle data requests from researchers and share our 
derived SDOH. One of the largest benefits of PostGIS is that 
it is database-driven; all methods and all spatial data can 
be used to create reusable queries that can be automated, 
which is necessary for live data systems that need to be 
maintained and updated with the most recent data. The 
ETL processes in Figure 1 require staff to be familiar with 
both database systems. TIGER reference data is updated 
yearly, which requires data management overhead for 
maintaining the most current data; because of this yearly 
lag, performance may vary in rapidly developing locations 
or locations that have undergone critical infrastructure 
changes. We learned that preprocessing is needed because 
of the noisy, unexpected characters that occasionally 
occur in address data.

As a preprocessing step, addresses are cleaned to correct 
commonly observed mistakes such as removing the names 
of businesses or apartment complexes in the first address 
line; our geocoder expected only street addresses as input. 

We also censor certain special characters that PostGIS uses 
for pattern matching. Our geocoding routine automatically 
normalizes addresses as part of the geocoding process, 
such as enforcing consistent capitalization of addresses 
and consistent abbreviation of street types (“Street” vs 
“St”, “Avenue” vs “Ave”, etc).

A series of data points are derived for each address as 
outlined in Figure 2. The semi-structured, normalized 
address is geocoded to derive latitude and longitude 
coordinates. The geocode function is part of PostGIS and 
it returns a list of potential points that match the address; 
since each result is rated, we simply take the point with 
the highest rating. We store the address data, matched 
coordinates, and rating in our warehouse, where most 
analytical tasks use results with ratings in the top quartile. 
Our ratings are reported in Table 1. The geocoded results 
with coordinates also contain computed city, state, zip 
code, and county from a spatial join with the TIGER 
reference data. Our electronic health records contained 
fields for county and zip code, but the utility of these 
was questionable due to many of them being blank or 
inconsistent with the recorded city. However, we can use 
what fields are present in the address data to partially 
validate our geocoding processes by comparing the 
individual components of the address and the geocoded 
results, such as comparing the original address’s city to the 
geocoded city. The derived city, state, zip code, and county 
are guaranteed to match the latitude and longitude of our 
computed point. There is natural error associated with 
geocoding; most matches are not exact due to nuances 
and variations in how addresses are recorded. The derived 
data points will at least be consistent with our calculated 
point; for example, a patient’s county or zip code will 
always match the county or zip code associated with the 
coordinates generated.

In addition to generating county and zip code, we 
intersected our coordinates with US Census Bureau 
geographies such as block, block-group, and tract, by using 
PostGIS’s ST_Contains function to join to the geographic 
region that contains the geocoded point. By design, 
blocks are the smallest geographic unit and contain 
600 to 3,000 people, while tracts are the largest of the 
three and have a population of 1,200 to 8,000 people.29 
This linkage to block, block-group, and tract geographies 

Figure 1: Clinical data warehouse augmented by GIS 
 services.

Figure 2: Geocoding raw address data and linking to 
 census data.

Table 1: Observed geocode ratings.

Rating Unique 
Records

Percent 
of Total

–1 (no result) 35,120 2.6

0 (perfect) 414,623 30.4

<10 809,131 59.2

<25 962,814 70.5

<50 1,055,123 77.2

<75 1,124,814 82.3
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enabled us to extract neighborhood-level SDOH collected 
by the US Census Bureau. The US Census Bureau conducts 
nation-wide surveys such as the Decennial Census and 
the yearly American Community Survey (ACS).30 We 
leveraged the Census Bureau’s API to extract reference 
data for the 2020 ACS 5-year estimates that correspond to 
our geographic regions. For every variable, we extracted 
estimates for totals, percentages, and margin of error for 
all geographies (county, zip code, tract, block-group, and 
block where available). Linking our patient data to this 
reference data was as simple as a database join in PostGIS, 
where the patient’s region matches the reference data’s 
region. Many of these variables are estimates for the 
percentage of population having a specific status, such 
as unemployed, living under the poverty rate, or specific 
race breakdowns. We further obfuscated the original 
percentage by binning similar thresholds when reporting 
or aggregating. For example, we grouped those living in 
areas of 0–5% unemployment when aggregating below-
average unemployment rates.

Our research data warehouse supports clinical and 
translational science on campus, and addressing health 
disparities plays a large role in our Center for Clinical 
and Translational Sciences. Given the local emphasis 
on health disparities and the complex socioeconomic 
history of Kentucky, we chose the following variables: 
unemployment rate; poverty rates for anyone, families 
specifically, children only, and adults only; education 
rates of high school degrees or bachelor’s degrees; veteran 
rates; rates of access to the internet; one race percentages 
for White, Black, Asian, American Indian/Alaskan Native, 
and other, multi-race percentages for two or more races, 
and percentage Hispanic or Latino of any race. These 
variables were chosen either for their direct relationship 
with the socioeconomic status of a region or for their 
correspondence to neighborhood race demographics, 
which is linked to disparities in health outcomes.6,9

Results
An exemplary run of our GIS pipeline processed addresses 
corresponding to 1,366,010 patients. Each geocoded 
result is rated 0 (perfect) to 100 (imperfect); this number 
represents the difference between the input address and 
the computed matched address in the reference data, in 
which 0 implies the reference address matched perfectly 
in the spirit of a string edit distance. The average rating 
for our example run was 27.9 with a median of 8.0, 

which indicated addresses were confidently geocoded. 
70.5 percent of our records were geocoded with a rating 
of 25 or less, indicating most records were successfully 
geocoded.

Table 1 summarizes the ratings observed for our 
1,366,010 patients for the best address match. A rating of –1 
indicated the address could not be geocoded (2.6% of our 
records) and these either correspond to post office boxes, 
which have no geospatial interpretation, or addresses 
that were poorly formatted, erroneous, or non-existent 
(“unknown”, “homeless”, etc.). Despite often missing 
complete address data, we previously demonstrated that 
unhoused patients and those who have experienced 
housing instability may be partially identifiable using 
address data;31 however, many of these individuals would 
fall into the 2.6% that could not be geocoded.

Those records with ratings higher than 50 have poor 
geographic resolution and are often just centers of cities 
corresponding to the address, which limits their utility. 
These imperfect results may be adequate for county-level 
or zip-code analyses, depending on local geography. For 
specific studies supported by our warehouse that leverage 
a smaller population, we can manually review and clean 
addresses with the goal of improving geocoding; this 
manual process scales poorly so we do not review matches 
for our entire warehouse.

Our linkage to neighborhood demographics from the 
ACS is summarized in Table 2 for a selection of important 
variables and by binning the results. Each patient lives in a 
neighborhood with a specific percentage that corresponds 
to an ACS variable. For example, a patient may live in an 
area known to have 12% unemployment, which would 
place them in the 10–15% unemployment bin in Table 2 
for our population; 8.7% of our patient population lived 
in regions with unemployment rates of 10–15%. For 
comparison, in July of 2023, the unemployment rate 
for the United States was 3.5% and 3.8% for the state 
of Kentucky, seasonally adjusted.32,33 The bin sizes for 
Table 2 were selected at every 5% for simplicity and may 
not reflect the optimal bin sizes for each variable.

In 2021, Kentucky is ranked 47th for poverty in the 
United States with a rate of 16.5%.34 Figure 3 shows 
the population that was captured by our research data 
warehouse by using quantiles where the darkest blue is 
the densest concentration of patients. Figure 4 shows 
the population when filtering for patients living in areas 
experiencing poverty rates larger than 20%. We only 

Table 2: Neighborhood demographics and percentage of patients in our data warehouse. For example, 33.8% of our 
patients live in an area where more than 20% of the population falls below the poverty line.

Demographic Mean SD Median Percentage of Patients Per Bin of ACS Estimated Percentages

Bin

0–5% 5–10% 10–15% 15–20% >20% Unknown

Unemployment 5.8% 5.9 5.2% 45.3% 40.4% 8.7% 4.1% 1.2%. <1%

Below Poverty 17.9% 11.5 15.8% 13.0% 13.7% 10.9% 27.8 33.8% <1%

Children Below Poverty 21.2% 17.2 19.0% 19.8% 6.5% 8.9% 17.7% 43.7% 3.4%

Veteran Status 7.9% 5.9 6.4% 23.2% 54.2% 12.5% 5.0% 4.2% <1%

Bachelor’s degree 24.9% 16.1 21.1% 7.8% 8.9% 13.7% 14.7% 53.9% <1%
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considered patients having geocode ratings of 25 or better 
to avoid categorizing patients into the wrong census tract. 
This illustrates that patients living in eastern Kentucky 
are experiencing the highest rates of poverty. Eastern 
Kentucky is home to Kentucky’s Appalachian counties, 
which have a long history of poverty-related issues.

We also looked at child poverty. 43.7% of our population 
lived in areas that had more than 20% of children living 
below the poverty line (21.2% on average for all patients). 
For comparison, the national poverty rate for children 
in 2021 was 16.9% and 22.1% for Kentucky.35,36 Some of 
the patients in this study live in areas where 100% of the 
children are estimated to live below the poverty line.

We also captured race and ethnicity related variables, 
which are largely driven by the population served in 
central Kentucky. The majority of patients lived in areas 
in which only 0–5% of the population were Black or 
African American (60.2%) or Hispanic or Latino of any 
race (62.24%). Conversely, 25.4% of patients lived in areas 
with more than 10% Black or African American residents; 
11.35% lived in areas with more than 10% Hispanic or 
Latino residents.

Discussion
The incongruence of patient address data being highly 
sensitive yet highly valuable for research is problematic 
for warehouses and researchers. The addresses, in their 

raw form as a collection of characters, are not valuable 
to biomedical research unless converted to structured 
data that allows analysis. For this workflow in particular, 
addresses acted as a means of obtaining and linking to 
important contextual information about a patient’s well-
being, including SDOH. We have demonstrated a HIPPA-
compliant workflow in which we deploy GIS tools to aid 
in the conversion of raw address data into neighborhood-
level SDOH by linking to publicly available data. The 
specific block, block-group, or tract assigned to a person’s 
address does not need to be shared, which conforms to 
“Safe Harbor” de-identification practices by avoiding the 
need to share sub-zip code designations; the resulting 
linked SDOH data is sharable and is incredibly valuable 
for research as it enables the analysis of location-based 
factors with health outcomes. It is not clear how distinct 
percentage estimates are for a particular geographic 
region, but binning percentages as seen in Table 2 further 
obfuscate in what particular area an individual lives. In 
future work, we wish to explore how unique a particular 
block, block-group, or tract may be with respect to all 
of its ACS demographics; the US contains over 8 million 
block-groups and over 84,000 tracts, which may imply 
that binning is needed to prevent deducing a person’s 
geographic region for unaggregated, row-level data.

The National Institutes of Health issued a mandate 
stating that in January of 2023 research proposals will 

Figure 3: Patients Served by University of Kentucky Healthcare, 2004–2022.

Figure 4: Patients Served by University of Kentucky Health Living In Areas Having Poverty Rates Larger than 20%, 
2004–2022.
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require a data management plan that outlines a public 
data sharing strategy.37 Data sharing is currently in the 
research spotlight due to national research programs that 
are designed to facilitate the sharing of data, such as All of 
Us38 and the National COVID Cohort Collaborative (N3C).39 
Data sharing is often a cultural or regulatory issue and 
not a technology problem. We have made great progress 
locally in informing our institutional review board of how 
our GIS results operate; in general, the release of patient 
address data or derived spatial data was not permissible 
before we invested in GIS infrastructure and expertise. 
Data sharing is expedited by converting highly sensitive 
address data to less sensitive environmental SDOH data by 
geocoding and linking to variables available in reference 
data; it is possible to share that a person lives in an area 
that has unemployment rates higher than 20 percent 
without revealing what region they live in.

As an institution, participation in any large-scale 
national research program requires a dynamic clinical 
data warehouse that is capable of meeting ad hoc requests 
for data and project requirements. We argue that GIS is 
the component of a clinical data warehouse for research 
necessary for geospatial computing and sharing of joined 
spatial data. Furthermore, many clinical data warehouses 
serve their research community by providing data extracts; 
we have shown that GIS could improve the utility of the 
raw address data, and spare other researchers redundant 
effort in performing their own geocoding. Our GIS data is 
pushed back into our enterprise’s research data warehouse 
for researchers to use.

Open-source GIS software minimizes cost and opens 
the door for adopting other open-source solutions. We 
created a plugin for PostgreSQL and PostGIS that bridges 
the gap between a popular data model and differential 
privacy, where privacy is a tunable parameter.10 Adding 
geographic coordinates to the data warehouse also 
enables other geospatial analyses, such as hot spot 
analysis. Open-source software is an important element 
in reproducible and equitable science, in which tools are 
publicly available for all and are not a barrier in research 
participation or adoption. Commercial software may have 
a role in addressing a research question, though cost 
may limit who is capable of licensing these tools thereby 
preventing equal access to research. If the research 
question is incompatible with the limitations of open-
source options, such as timeliness of spatial reference 
data, commercial software and cost may be required to 
generate more accurate results.

This work focused on adding context to patients using 
location-based SDOH made available by the US Census 
Bureau. GIS also allows for distance-based contextual 
information, including highlighting how far away a patient 
lives from healthcare entities, pharmacies, or other health-
related waypoints. These distances may also be obfuscated 
by adding noise, and binning may also be applicable to 
create categories of patients based on different distance 
thresholds. There are several important limitations to our 
SDOH findings. Results were not integrated into the local 
electronic medical record, which limits our reach and 
impact; we focused solely on supporting research by making 
our GIS data available in our research data warehouse. Our 

historical patient data from 2004 to 2021 contains only 
the most recent address data for patients, which implies 
that we potentially miscategorized a patient’s SDOH if 
they moved between areas with differing socioeconomic 
factors. The TIGER reference data for PostGIS is only 
updated annually, which may impact its accuracy in areas 
experiencing high levels of development or other critical 
infrastructure changes. Census and ACS-based variables 
are estimates with an associated margin of error; these 
margins of error are reportable and sharable, although it 
can be difficult for end users to judge the significance or 
impact of these margins on a research question. Because 
of this, we urge researchers using healthcare GIS data to 
be aware of ACS limitations with respect to variation in 
geography and uncertainty.40,41 The GIS solution explored 
in this paper is specifically designed to create usable data 
for analytical purposes; other tools are needed for the 
analysis component, such as development, visualization, 
or business intelligence tools.

Conclusions
GIS support is a necessary component of a clinical data 
warehouse; sharing derived, de-identified data is both 
feasible and useful for research. Patient address data 
is heavily protected but also very useful for research 
purposes, as the addresses may be linked to location-based 
SDOH that add contextual patient information about their 
environment. This contextual information is important 
for health outcomes and is not available anywhere else as 
part of patient electronic health records. We recommend 
adopting open-source software as it lowers the barrier 
of adoption and the cost associated with deriving these 
contextual data points. We specifically recommend using 
database-driven GIS tools, such as PostGIS, because they aid 
in automation. Adding location-based SDOH to clinical data 
warehouses prevents duplication of effort by centralizing 
results that may be shared elsewhere. Address-related data 
is often viewed as data that cannot be shared in any form. 
We hope to contribute to a culture shift that recognizes 
that location-based data is sharable in safe and ethical 
forms; we encourage others to use this work to help justify 
integrating GIS into local research warehousing efforts.

Appendix

Appendix 1: 2020 ACS 5-Year Estimates: Concept and 
Variable Mapping.

Concept Variable

Unemployment DP03_0009PE

Poverty DP03_0128PE, DP03_0119PE, 
DP03_0129PE, DP03_0133PE

Education DP02_0067PE, DP02_0068PE

Veteran DP02_0070PE

Access to the Internet DP02_0154PE

Single Race DP05_0037PE, DP05_0038PE, 
DP05_0044PE, DP05_0039PE, 
DP05_0057PE

Multi-Race DP05_0058PE

Hispanic or Latino DP05_0071PE
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