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Basic Data Structure for Hierarchical Composite 
Endpoints: An Application to Kidney Disease Trials
Samvel B. Gasparyan*, Nicole Major†, Christoffer Bäckberg*, Srivathsa Ravikiran†, 
Parag Wani* and Martin Karpefors*

Introduction: Hierarchical composite endpoints (HCE), including the recently introduced kidney HCE, 
are complex endpoints that are usually analyzed by win statistics and are visualized using novel maraca 
plots. As a result of its novelty and the complexity of the analyses of HCE using win statistics, the 
construction of analysis datasets that conform to the fundamental principles put forward by the Clinical 
Data Interchange Standards Consortium (CDISC) Analysis Data Model (ADaM) is not straightforward.
Objectives: We show that in the case of a fixed follow-up it is possible to construct an analysis dataset 
that conforms to Basic Data Structure principles and is analysis-ready for conducting multiple analyses, 
including win statistics generation and visualization of HCE using maraca plots.
Methods: We use theoretical justification for the fixed follow-up designs to show that the pair-wise 
comparisons of participants for the win statistics analyses can be reduced to a participant-level ranking, 
and use the fundamental principles put forward by CDISC and Tidy principles of the data science community 
to derive an ADaM-compliant dataset.
Results: In the setting of fixed follow-up designs, we construct an ADaM-compliant dataset for conducting 
win statistics analyses and visualization using maraca plots, with the required metadata traceability.
Conclusions: Based on the growing importance of HCEs in clinical trials, and the difficulty in creating 
ADaM-compliant datasets for these analyses, we provide principles to create such datasets, to prompt 
the clinical community and CDISC to work towards standardization of analysis datasets for hierarchical 
composite endpoints.

Keywords: hierarchical composite endpoints; win statistics; maraca plots; CDISC ADaM; Tidy data; basic 
data structures

Introduction
Hierarchical composite endpoints (HCEs) are complex 
endpoints1-4 that are analyzed using win statistics and 
visualized using maraca plots.6 An HCE has a hierarchical 
structure and uses the most clinically severe event of a 
participant in studies with a fixed follow-up design. This 
results in an ordinal endpoint, similar to the severity 
scale endpoints. As a result of its hierarchical nature, 
an HCE can combine outcomes of different types into 
a composite, for example, clinical events of death and 
hospitalization with numerical laboratory variables or 
symptom summary scores.7,8 In addition, the clinical 
events may contribute to the composite with the time 
of the corresponding event, as an additional layer of 

severity. This means that participants having an event of 
the same severity are compared using the timing of the 
event, with a later event signifying a better outcome. 
Overall, the ordering is done so that a higher order means 
a better outcome. A characteristic of ordinal endpoints is 
that the concepts of better or worse are defined but not 
the quantitative magnitude of how much better or worse 
(unlike a continuous endpoint). HCEs are implemented in 
different therapeutic areas: COVID-19,9,10 heart failure,8,11 
and chronic kidney disease (CKD),7 to name a few.

Due to its novelty and the complexity of the analyses 
involving HCE, the construction of analysis datasets 
conforming to the fundamental principles put forward  
by the Clinical Data Interchange Standards Consortium 
(CDISC) Analysis Data Model (ADaM)12 is not straight-
forward nor is it apparent whether it is possible. These 
fundamental principles were suggested with the purpose 
of providing standardization of the datasets across various 
stakeholders included in the conduct, analysis, and 
reporting of clinical trials in order to achieve transparency 
in analyses, as well as in communication and review.13 
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ADaM is one of the implementations of these fundamental 
principles; other implementations of similar principles 
are known to the data science community as Tidy data 
principles.14

Win statistics5 (win ratio,15 win odds16,17 or win ratio with 
ties,18,19 net benefit20) are statistical methods for analyzing 
HCE and are based on the principle of comparing each 
participant in the active group with each participant in 
the control group using multiple outcomes and differing 
follow-ups for these outcomes. Construction of an ADaM 
compliant analysis dataset is therefore a challenge facing 
every clinical trialist involved in the analysis and reporting 
in a regulatory setting where such data structures are a 
requirement.

Using theoretical justification in the case of a fixed 
follow-up, we show that it is possible to construct an 
analysis dataset, ADHCE, that conforms to ADaM principles 
using the Basic Data Structure (BDS) that is analysis-ready 
for conducting win statistics analyses. In other words, this 
dataset can be used for performing the analyses without 
having to manipulate data first. The created BDS for the 
HCE analysis will therefore allow the separation of the 
analysis data creation from the analysis result generation 
(as is the intention of ADaM datasets), even for such 
complex analyses as win statistics calculations.

Traceability between analysis data values and their 
specific predecessor records is provided in the form of 
data point traceability. Traceability facilitates transparency 
of analysis conduct and allows for its replication. Detailed 
traceability is particularly important for the HCE derivation 
as it involves multiple outcomes derived through complex 
data manipulations from different datasets. Construction of 
a single ADHCE dataset that follows the BDS and is analysis-
ready is important for clear communication of results and 
software development for analysis and reporting.

Background
Basic data structures for common analysis methods
An ADaM dataset is a particular type of analysis dataset 
that follows the ADaM fundamental principles defined in 
the ADaM12 and is compliant to ADaM defined structures 
or follows as closely as possible to the ADaMIG variable 
naming and other conventions.13 Currently, ADaM has 
three structures: Subject Level Analysis Dataset (ADSL), 
Basic Data Structure (BDS), and Occurrence Data Structure 
(OCCDS). An ADaM dataset contains both source 
and derived data; it is therefore important to clearly 
document the variable derivations and how to use them 
for obtaining the analysis results. ADSL is a required, 
participant-level dataset that contains participants’ 
baseline and demographic characteristics, population 
flags that indicate the participant’s inclusion in different 
analysis populations, planned and actual treatment 
variables for each period, and important dates. The BDS 
datasets contain endpoints and data that vary over time 
during the course of a study and are organized as one 
or more records per subject per analysis parameter per 
analysis timepoint. It is often optimal to have more than 
one BDS analysis dataset, but not necessarily one dataset 
per analysis. The BDS datasets are the main data structures 

used for complex statistical analyses but are not designed 
to support analysis of incidence of adverse events or other 
occurrence data. Analysis of such data is supported in the 
OCCDS. For commonly used analysis methods (eg, analysis 
of variance or covariance, logistic regression and so on) the 
BDS implementation is straightforward. A more complex 
analysis method for time-to-event analyses has its own 
standardized BDS, ADTTE, that is well developed21 and 
widely used. Although the BDS supports most statistical 
analyses, it does not support all statistical analyses. For 
example, it does not support simultaneous analysis of 
multiple dependent (response/outcome) variables or a 
correlation analysis across a range of response variables.

In the ADaM design, at a minimum, the analysis datasets 
should contain the datasets needed for the recreation of 
specific statistical methods. There is no requirement that 
every analysis has its own dataset, but rather, a single 
dataset can support multiple analyses to achieve the 
optimal number of analysis datasets. Each analysis dataset 
should contain all the analysis-enabling variables required 
for performing the statistical analysis it is designed 
to support (it can even contain supportive variables 
not needed for the analysis but that are of interest for 
traceability purposes). This can lead to redundancy, that 
is, the same data appearing in multiple datasets, but this 
is necessary for having analysis-ready datasets. Analysis-
ready does not mean that the results can be generated 
in a single statistical procedure, but rather that each of 
the summary statistics included in the results can be 
derived with minimal programming effort using standard 
statistical procedures with the dataset as input.

We briefly describe the fundamental principles 
governing the structure of BDS in connection to Tidy data 
principles and discuss the structure of ADLB (analysis 
datasets for laboratory values) that is used for the ANCOVA-
type analyses and ADTTE for time-to-event analyses, as 
these two datasets, alongside the participant-level ADSL, 
are the source datasets for ADHCE. Then, following the 
BDS principles, we construct the ADHCE dataset, which 
is analysis-ready for multiple analyses (with its metadata 
traceability describing the source datasets and variables) 
and provide the minimal steps required to perform these 
analyses using ADHCE.

The methodology provided here is applicable only 
for fixed follow-up settings. For settings without fixed 
follow-up, we explore the challenges associated with the 
derivation of an analysis dataset that conforms to the 
BDS principles.

Methods
The kidney hierarchical composite endpoint: the 
definition and the algorithm for construction
Consider the case of two treatment groups, with active and 
control treatments, and assume that all participants have 
the same follow-up and there are no dropouts, meaning 
all participants were followed for all events of interest 
until the end of the fixed follow-up. The kidney HCE4,7 
has the following construction: during a fixed follow-up, 
participants are followed for one of the six dichotomous 
events in the provided hierarchy described in Table 1.
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If a participant experiences death, they are ranked 
in the category one and the timing of the death is used 
to determine the ranking within that category, with an 
earlier death being a worse outcome (a lower rank is 
assigned). Otherwise, if the participant is alive at the end 
of the follow-up, then the next event in the hierarchy is 
considered for ranking this participant and so on. If the 
participant did not experience any of the six events, then 
they fall into category seven in which the individual rate 
of change of glomerular filtration rate (GFR) is used to 
further rank the participants, with a lower rate of kidney 
decline being a better outcome (ranked higher).

The time-to-event (TTE) analysis dataset, ADTTE, is an 
ADaM BDS dataset that includes additional TTE variables 
designed for survival analyses. The distinguishing feature 
of survival data is that at the end of the observation 
period the event of interest may not have occurred for all 
subjects. The single ADTTE dataset can support multiple 
survival analyses, for example, Cox proportional hazards 
regression, Log-rank test and so on. For a given analysis 
parameter value (PARAM or the short name of the analysis 
parameter value PARAMCD), ADTTE has one record per 
subject and the two variables used in all models of survival 
analyses: the analysis value, AVAL, which shows the 
timepoint until when the participant was observed for the 
event of interest and the censoring variable, CNSR, which 
indicates whether or not the event of interest occurred. The 
variable ADTTE.AVAL therefore shows either the timing of 
the occurrence of the event (if CNSR=0) or the length of 
the fixed follow-up duration for participants without an 
event (CNSR=1). ADTTE should also include the subject 
identifier (SUBJID) and the treatment variable showing 
planned treatment allocation (TRTP) in a randomized, 
controlled trial. The fixed-follow up duration is stored 
in Primary Analysis Day (PADY), which is inherited from 
ADSL, since this variable is a common analysis date for all 
participants and is needed across multiple datasets. The 
ADTTE dataset contains the six dichotomous events of 
interest (Table 1), each having a unique PARAM value.

The BDS for laboratory data, ADLB, has one row per 
subject per visit per analysis parameter value and contains 
GFR measurements under a specific analysis parameter, 
PARAM, and the variables AVISIT, which indicates the 
timepoint of measurements (categorical variable with 
visit names); analysis day ADY for the number of days 

relative to an anchor date (in this case, the date of 
randomization); the analysis values AVAL, which contain 
the GFR measurements at each visit; and the BASE variable 
for the baseline GFR values for each subject. In addition, 
the individual rate of change of GFR over time can be 
derived (see the supplementary material)7 in ADLB.AVAL 
corresponding to a new analysis parameter value (PARAM 
= “Rate of change of GFR”).

An HCE analysis results metadata – win statistics and 
maraca plot
An HCE can be analyzed using the methods for ordinal 
endpoints, for example, rank ANCOVA,22 ordinal logistic 
regression23 or win statistics.5 We consider the win odds17 
but the same principles can be applied to other win 
statistics. Based on the hierarchy defined above, based on 
which each participant in the active group is compared 
with each participant in the control group using each 
participant’s clinically most severe outcome. Hence, 
first we select the clinically most severe outcomes of the 
participants from the given fixed follow-up duration, then 
compare participants based on those outcomes. If the 
participant in the active group has a less severe outcome 
than the participant in the control group, then this is a 
“win” for the participant in the active group. Forming all 
possible comparisons of participants in the active group 
with participants in the control group, we derive the total 
number of wins, losses, and ties of the active group. The 
win odds of the active group against control is formed as 
the total number of wins (plus half of all ties) divided by 
the total number of losses (plus the second half of the 
ties). Win odds greater (less) than 1.0 is indicative of the 
treatment effect in the active (control) group, while win 
odds of 1.0 is indicative of no difference between groups.

To visualize HCEs, maraca plots (so named after 
their visual similarity to the musical instrument) were 
introduced.6 On the maraca plot for a kidney HCE, 
the x-axis is divided into the seven HCE component 
categories in severity order from left to right. The six TTE 
components are visualized with adjoined cumulative 
Kaplan-Meier plots. For the continuous component, the 
x-axis corresponds to the annualized rate of change of GFR 
and a beneficial effect on the continuous component is 
characterized by a shift to the right. The associated vertical 
dashed lines show the median values for the annualized 

Table 1: The outcomes in the kidney HCE.

Rank Outcome Subcategorization Favorability Source dataset

1. Death Timing (later is better) Worst ADTTE

2. Dialysis Timing (later is better) ADTTE

3. Sustained eGFR <15 Timing (later is better) ADTTE

4. Sustained >=57% decline in eGFR Timing (later is better) ADTTE

5. Sustained >=50% decline in eGFR Timing (later is better) ADTTE

6. Sustained >=40% decline in eGFR Timing (later is better) ADTTE

7. Individual rate of change of GFR Actual values (higher is better) Best ADLB

eGFR = estimated glomerular filtration rate.
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rates of changes of GFR among participants without 
dichotomous outcomes in the two treatment groups. Each 
participant contributes to the HCE with one event, and 
the width of each category (dichotomous or continuous 
outcomes) corresponds to the percentage of that category 
in the composite. An illustration of analysis results with 
win odds is provided in Table 2, with the corresponding 
maraca plot in Figure 1.

Results
ADHCE as an analysis-ready BDS
The win odds compares every participant in the active 
group with every participant in the control group 
(a cartesian product) and hence requires these pair-
wise comparisons in a dataset so that the summary of 
wins/losses/ties is calculated. But a dataset with that 
structure will not be an ADaM compliant analysis dataset 

and, in fact, will have a very messy structure according to 
Tidy principles, since each row will not be an observation, 
but a combination of observations from two treatment 
groups. Like BDS principles, the data science community 
uses Tidy principles,14 according to which each variable 
should form a column, each observation should form a 
row, and each type of observational unit should form a 
dataset. Any violation of these principles results in messy 
datasets, for example, if column headers are values, not 
variable names or if variables are stored in both rows and 
columns. The Tidy principles are like the BDS principles, 
but they also describe in detail how these principles can 
be violated. The use of pair-wise comparisons in a dataset 
would therefore result in two columns representing the 
treatment groups and hence having the column names as 
analysis values (because the treatment group is used as an 
analysis value), violating another Tidy principle.

Table 2: Win statistics analysis example.

Endpoint Timepoint Group Participants 
with event

n (%)

Comparison of treatment groups

Estimate  95% CI p-value

Kidney hierarchical 
composite endpoint

3 years Active
N = 750

118 (15.7) 1.33 (1.18, 1.50) <0.001 

Control 172 (22.9)

N = 750

n (%) shows the number and percentage of participants with a dichotomous event. The percentage is calculated using the number 
of participants in each treatment group as a denominator.

Figure 1: A maraca plot for HCEs.
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Another possible structure for the analysis dataset 
would be to keep only the number of wins/losses/ties 
for each participant as a counting response variable. 
But this would mean having multiple response variables, 
which is also non-compliant with ADaM principles. 
Keeping only the wins for each participant plus half the 
number of ties allows a compliant dataset to be created, 
but limits analysis to only win odds analysis. For a win 
ratio analysis, a different definition of the analysis value 
would be needed to keep only the number of wins 
without ties. Importantly, different types of analyses, 
eg maraca visualization or ordinal regression, cannot 
be performed using these analyses’ values.

We derive an ADaM compliant dataset (see Figure 2), 
ADHCE, with a single analysis variable that is analysis-ready 
for multiple analyses. The theoretical justification for this 
is that the number of wins of a participant can be derived 
using the rank of the participant in the overall dataset 
(both treatment groups combined) and the rank of that 
participant in their own treatment group.17,18 Therefore, 
the participant-level ranking from the worst outcome to 
the most favorable can help to create an analysis value 
for the win statistics calculation. This methodology is 
applicable only in the cases of fixed follow-up durations 
since in case of differing follow-ups between participants 
comparison issues may arise, known as transitivity 
issues,4,24 which would lead to comparisons not being on 
the participant level (impossibility to rank participants 
using their outcomes).

To derive AVAL in ADHCE (Table 4), first identify 
participants with any of dichotomous outcomes by 
selecting the PARAM value in ADTTE corresponding to this 
event (for example, selecting ADTTE.PARAM= “All-cause 
death” and ADTTE.CNSR=0). Then select the most severe 

event of a participant and the corresponding timing of 
the event from ADTTE.AVAL. If ADTTE.PADY shows the 
length of the fixed follow-up, then the algorithm for 
AVAL for each participant is shown in Box 1

Box 1: Derivation of ADHCE.AVAL for dichotomous 
outcomes.

•	 if	 ADTTE.PARAM=”All-cause	 death”	 and	 ADTTE.
CSNR=0 then ADHCE.AVAL = 1*ADTTE.PADY + 
ADTTE.AVAL,

•	 else	if	ADTTE.PARAM=”Dialysis”	and	ADTTE.CSNR=0	
then ADHCE.AVAL = 2*ADTTE.PADY + ADTTE.AVAL 
and so on.

For participants without any dichotomous outcomes, 
we use the individual rate of change of GFR from ADLB, 
which can be negative. Regardless of their rate of change, 
a participant without any outcomes should have a higher 
AVAL than any other participant in all other categories, as 
shown in Box 2.

Box 2: Derivation of ADHCE.AVAL for the continuous 
outcome.

•	 ADHCE.AVAL	=	7*ADTTE.PADY	+	ADLB.AVAL(PARAM	
= “Rate of change of GFR”) – m + 1,

where m is the minimum of all values ADLB.
AVAL(PARAM = “Rate of change of GFR”) for 
participants who did not have any of the 
dichotomous events.

The categorization of AVAL, AVALCAT1, contains 
the type of the event (presented in Table 1), while 
AVALCA1N is the numeric order of this categorization. 
As part of the traceability, we provide an illustration of 
the ADHCE dataset (Table 3), the metadata of analysis 
variables (including analysis parameter values) included 
in ADHCE (Table 4). For full traceability between the 
results, the analysis datasets and the source datasets the 
analysis results metadata is presented in Table 5 (for 
results in Table 2 and Figure 1).

Analysis and visualization using ADHCE
The dataset ADHCE (Table 3) is analysis-ready for win 
odds analysis and visualization using maraca plots. 
Win odds in the SAS® software25 (using the procedures 
freq or npar1way) is provided in the Appendix of 
Gasparyan et al.17 For example, using proc freq the win 
odds can be calculated as follows (caution should be 
made to select the control group as the reference). See 
Box 3.

Table 3: Illustration of analysis dataset ADHCE.

SUBJID TRTP AVAL AVALCAT1 AVALCA1N PADY PARAM PARAMCD

001 A 21 Death 0 1080 Kidney Hierarchical composite endpoint KHCE

Figure 2: Schematic representation of relationship of 
ADHCE source data.
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Similarly in the R software, the package hce26 can 
be used to derive the win odds. This confirms that the 
analysis dataset ADHCE is analysis-ready for win odds 
analysis since it is possible to perform the calculations 
without first having to manipulate the data (Table 5). 
The package maraca27 in R can be utilized for producing 
Figure 1 from the dataset ADHCE with minimal 
programming. The maraca package recognizes the 
ADHCE data structure as of class “adhce”, meaning that 
it expects all the variables mentioned in the dataset’s 
derivation above and hence can effortlessly produce the 
plot as shown in Box 4.

Box 4: R implementation of maraca plots.

library(ggplot2)
library(maraca)

class(ADHCE) #adhce
plot(ADHCE)

Table 5: Analysis Results Metadata.

Metadata Field Definition of field Metadata 

DISPLAY IDENTIFIER Unique identifier for the specific analysis 
display 

Table 14.1.1 

DISPLAY NAME Title of display Primary Endpoint Analysis: Kidney hierarchical composite 
endpoint by Day 1080 – win statistics 

RESULT IDENTIFIER Identifies the specific analysis result within 
a display 

Comparison of treatment group

PARAM Analysis parameter Kidney Hierarchical composite endpoint

PARAMCD Analysis parameter code KHCE

ANALYSIS VARIABLE Analysis variable being analyzed AVAL

REASON Rationale for performing this analysis Primary efficacy analysis as pre-specified in protocol 

DATASET Dataset(s) used in the analysis. ADHCE 

SELECTION CRITERIA Specific and sufficient selection criteria for 
analysis subset and/or numerator 

FASFL=’Y’ and PARAMCD= “KHCE”

DOCUMENTATION Textual description of the analysis 
performed 

The kidney hierarchical composite endpoint by Day 1080 
is analyzed using win odds 

PROGRAMMING 
STATEMENTS 

The analysis syntax used to perform the 
analysis 

PROC FREQ DATA = ADHCE;
TABLES TRTP * AVAL / MEASURES;
ODS OUTPUT MEASURES = MEASURES0;
RUN;
DATA MEASURES;
SET MEASURES0;
WP = (VALUE + 1) / 2 ;
ASE = ASE / 2 ;
ALPHA = 0.05 ;
C = PROBIT (1 – ALPHA / 2);
WO = WP/(1-WP);
LCL0 = WP – C * ASE;
UCL0 = WP + C * ASE;
LCL = LCL0/(1- LCL0);
UCL = UCL0/(1- UCL0);
Z	=	ABS	(WP	−	0.5)	/	ASE;
P = 2 * (1 – PROBNORM (Z));
KEEP WO LCL UCL P;
RUN;

Box 3: SAS implementation of win odds.

proc freq data = ADHCE;
tables TRTP * AVAL / measures;
ods output Measures = Measures0;

run;
data measures;

set measures0;
WP = (value + 1) / 2 ;
ASE = ASE / 2 ;
alpha = 0.05 ;
C = PROBIT (1 – alpha / 2);
WO = WP/(1-WP);
LCL0 = WP – C * ASE;
UCL0 = WP + C * ASE;
LCL = LCL0/(1- LCL0);
UCL = UCL0/(1- UCL0);
Z = abs (WP − 0.5) / ASE;
P = 2 * (1 – PROBNORM (Z));
keep WO LCL UCL P;

run;
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The maraca plots are ggplot228 objects and hence allow 
for customization. The maraca plots have the functionality 
of also producing an associated analysis dataset that can 
be used for validating this output.29

Discussion
The most important question in creating BDS datasets is 
the decision of when to keep the required analysis value as 
a new variable (column) in the dataset or as a new record 
(row). A similar rule exists in creating Tidy datasets, which 
states that the column headers should not be values, 
but variable names.14 In the ADaM implementation, the 
analysis values are stored in a column called AVAL, and the 
rules for adding new variables that contain analysis values 
are stricter. The main rule is to keep all analysis values 
in AVAL and to group them by the analysis parameter 
(PARAM) values. There are some permitted deviations 
though. For example, the BASE variable contains the values 
of AVAL corresponding to the baseline (initial timepoint). 
While AVALCATy (eg, AVALCAT1, AVALCAT2, and so on) 
and AVALCAyN are parameter variant categorizations of 
analysis values to categorical and numerical categories, 
respectively. Additional variables for analysis can be 
created, only if they follow the fundamental rule of adding 
new columns to a BDS, according to which a parameter-
invariant (calculated the same way for all parameters for 
which the variable is populated in a dataset) function of 
AVAL and BASE can be derived into a new variable if it does 
not involve a transformation of BASE. For example, the 
variable CHG (change from baseline), which is derived as 
CHG = AVAL – BASE, is parameter-invariant and does not 
include a transformation of BASE, so CHG can be a new 
column in the analysis dataset. But a transformation of 
analysis values that does not meet this condition should 
be added as a new parameter, and AVAL should contain the 
transformed values. Therefore, the fundamental principle 
of BDS is that only one analysis variable per participant 
can be derived as a column in the dataset (in any other 
case not covered by the permitted deviations and by the 
fundamental rule of adding new columns described above), 
while multiple analysis values need to be retained in the 
same variable under different analysis parameter values.

An ADaM dataset is a particular type of analysis dataset 
that follows the ADaM fundamental principles defined in 
the ADaM and is compliant to ADaM defined structures 
or follows as closely as possible to the ADaMIG variable 
naming and other conventions.13 ADTTE (Time-to-event 
analysis dataset)21 is a special case exception. It does not 
strictly follow the fundamental principle of basic data 
structure as it essentially has two analysis values: length 
of the follow-up (AVAL variable) and a censoring variable 
showing whether an event happened during that follow-up 
(CNSR variable). This flexibility allows two dependent 
variables that can be used in statistical modelling. CDISC 
standardization of this dataset makes this a widely used 
and ADaM compliant dataset. Time-to-event analyses are 
common in clinical trials (including as a primary analysis), 
hence standardization of this dataset was important and is 
helpful for implementation.

To follow the BDS fundamental principles for the 
hierarchical composite endpoints in the absence of 
fixed follow-up is difficult since the participants are 
compared using their shared follow-up approach.15 
This leads to transitivity issues16,24 and consequently 
participants cannot be compared on a common clinical 
scale, hence the impossibility to derive one analysis value 
per participant. All relevant events of the participant 
along with the maximum length of follow-up for each 
participant therefore need to be retained as analysis 
values. Different analysis values from these multiple 
values would contribute to analysis that depend upon 
which participants are compared. Therefore, this 
may potentially lead to multiple analysis values per 
participant, hence to the creation of a non-compliant 
analysis dataset. This would mean that an analysis dataset 
for win statistics analyses with variable follow-ups will 
either follow the BDS principles but not be analysis-
ready (multiple data transformations should be done 
on this dataset before win statistics can be calculated) 
or the dataset will be analysis-ready but will not be 
ADaM compliant.

The presence of a fixed follow-up is of course a 
restriction, but it solves different statistical issues (for 
example, the analysis results can be interpreted on a 
participant level which may be more clinically meaningful) 
and, as described in this paper, solves issues of having 
multiple analysis variables as columns, hence creating 
the possibility to derive a dataset that conforms to the 
fundamental principles of ADaM and is analysis-ready for 
multiple analyses.

Conclusion
We have provided the principles of constructing an 
analysis dataset for the hierarchical composite endpoints 
in a fixed follow-up setting. As an example, we have used 
the novel kidney HCE, but the same principles can be 
applied for HCEs in different therapeutic areas as well. 
We demonstrated that the constructed analysis dataset 
conforms to the fundamental principles of BDS, and so 
it is an ADaM compliant dataset. It is analysis-ready for 
multiple analyses, including generating win statistics 
and visualization using maraca plots. The purpose of this 
paper is to highlight the principles and to provide an 
example for content illustration with only key variables 
included. The constructed ADHCE dataset should not 
be considered as a standardization of the structure and 
appearance of the dataset. In line with the general note 
in CDISC guidance documents, eventual implementation 
of the dataset may follow the same principles but have a 
different display and contents.

Here we want to highlight the growing importance 
of hierarchical composite endpoints in clinical trials, 
including their use as a primary endpoint, and we urge 
the clinical community and CDISC to work together to 
derive a standardized analysis dataset for hierarchical 
composite endpoints and for win statistics analyses in 
general, similar to the ADTTE dataset. We hope that this 
paper serves as the first modest step in this direction.
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