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Clinical Data Warehousing: A Scoping Review
Zhan Wang*, Mahanaz Syed*, Shorabuddin Syed*, Melody Greer†, Emel Seker†, 
Meredith N. Zozus* and Catherine K. Craven*

Introduction: A clinical data warehouse (CDW) is a powerful resource that supports clinical decision-making 
and secondary data use by integrating and presenting heterogeneous data sources. Despite considerable 
effort within healthcare organizations (HCOs) to develop CDWs, scientific literature surrounding clinical 
data warehousing methods is limited.
Objectives: The scoping review aims to characterize the current state of CDW methods within HCOs, 
to identify extant evidence for practice recommendations, and ultimately to advance the design, 
implementation, and use of CDWs.
Methods: The review encompasses CDW articles published from 2011 through 2021 identified through 
a systematic PubMed search. Article abstracts were systematically screened by two authors. Full-text 
articles were reviewed and abstracted independently by two authors with discrepancies resolved through 
consensus.
Results: 137 articles, from 55 journals and 3 conference proceedings, were categorized and analyzed. 
Areas for increased CDW focus include CDW design (such as data integration of increased data types 
and sources; extract-transform-load (ETL) optimization; data quality improvement processes; semantic 
data representation) and CDW governance (such as support tools/documentation and data literacy efforts 
for staff and end-users; governance structure; and business model/financial support for CDWs including 
staffing).
Conclusion: The study indicates the topics that have been significantly developed and the aspects that 
need additional focus and reporting in CDW between existing general data management best practices 
and recently articulated requirements for research data. Also, more multi-site and multi-aspect studies 
are needed to foster maturity at CDWs.
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Introduction
Electronic health record systems (EHRs) are widely 
used by physicians and other members of care teams 
in decision making. Nearly ubiquitous EHR adoption in 
the U.S. and elsewhere over the last decade spurred the 
current emphasis on the secondary use of healthcare 
data for research [1], and the widespread development 
of institutional patient data repositories for research at 
academic health centers and larger health systems [2, 3] 
A data warehouse is a collection of data that is subject-
oriented, integrated, time-variant, and non-volatile 
that can be used to produce useful information for 
management decision making [4]. Organizations have 
developed clinical data warehouses (CDWs) to integrate, 

manage, and centrally provide access to EHR data (often 
incorporating other types of patient data) to researchers 
and other stakeholders.

Learning health systems require data from healthcare 
organizations, including internal and external clinical, 
operational, and financial data, which implies that 
healthcare data warehousing is becomming an expected 
capability of healthcare organizations (HCOs). In Academic 
Medical Centers (AMCs) where these data are also needed 
to support research, we would expect heightened 
emphasis on CDW methods. Despite considerable effort 
within HCOs to develop CDWs, data warehousing is 
not a common topic within biomedical literature. We 
conducted a scoping review to gain insight into the state 
of CDW methods, technological developments, current 
foci, impacts, and potential gaps from the literatures as 
implemented as a CDW. A scoping review, as defined by the 
Canadian Institutes of Health Research, is an “exploratory 
project that systematically maps the literature available 
on a topic, identifying key concepts, theories, sources of 
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evidence and gaps in the research [5–8].” Scoping reviews 
are undertaken prior to a full synthesis when a domain’s 
literature is large, or conversely, as was the case here, 
when there is a lack of literature, to specify what is known 
[7]. We chose to search solely PubMed, the world’s largest 
freely accessible online biomedical citation database 
[9], precisely because it is where the most healthcare-
related journals are indexed, including those for clinical 
research informatics, a domain in which CDWs are a 
focus. The scholarly literature on CDWs at HCOs indexed 
within PubMed is likely to be more comprehensive than 
elsewhere, day [10].

The focus of the study was to achieve the following 
goals:

[1]  Understand the current state of CDWs used in clin-
ical organizations;

[2] Indicate CDW current improvement foci;
[3]  Indicate gaps in the CDW literature between exist-

ing general data management best practices and 
recently articulated requirements for research data.

Material and methods
Data collection
Based on expert knowledge from the author team (CKC, 
MG, MNZ) as well as additional professional medical 
librarian input, and multiple iterative tests, we formulated 
the following query to represent the concept of CDW for 
the PubMed search:

The query was designed to identify all potential 
literatures as implemented as CDWs, and their ongoing 
development, technologies employed, methodologies, 
and areas of study about them, over time, as language 
surrounding the concept matured, including when the 
Medical Subject Heading “Data Warehousing” was added 
in 2018. The query emphasized CDW methodologies and 
development. The articles only mentioned the use of 

CDW data or CDW applications were excluded. The other 
emphasis of the query was academic-developed or public 
CDWs as a result of the inclusion of i2b2 (Integrating 
Biology & the Bedside) terms. These emphases could lead 
to the under-representation of: 1) other common data 
model (CDM) studies (eg, Medical Outcomes Partnership 
(OMOP)), 2) commercial CDW studies, (eg, Epic systems, 
such as Clarity, Caboodle, COSMOS [11]; and other systems, 
such as Healtheintent, HealthFacts, etc.) 3) specific 
methodology studies (eg, data modeling, data quality), 
and 4) specific data registry studies (eg, cancer, molecular 
biological data, or COVID studies, such as the National 
COVID Cohort Collaborative). This scoping review included 
all relevant studies published in peer-reviewed journals 
indexed in MEDLINE (the largest subset of PubMed) 
between January 1, 2011, and September 30, 2021, when 
we ran our final query. We limited the years included in 
the scoping review only after extensive examination of 
the retrieved literature prior to this period, for which we 
deemed the content too far removed from the present to 
be actionable or informative outside of historical interest. 
The time period for the search also corresponded with the 
recent emphasis from the National Institutes of Health 
Clinical and Translational Science Award (CTSA) program 
– from which the first round of funding started in 2006 
– on data warehousing as important clinical research 
infrastructure, the multi-year time period to reach large 
numbers of funded institutions and the lengthy design 
and development process for CDWs.

All citations to potentially relevant studies retrieved 
were also screened for inclusion [12].

Data collection and analysis
Each title, abstract, and full-text article retrieved was 
reviewed by two independent reviewers (CKC, ZW). When 
the two reviewers reached different conclusions, a third 
reviewer (MS or SS) adjudicated in a group discussion to 
produce a final decision on inclusion.

The following exclusion criteria were applied to article 
screening and full-text review: (1) articles from non-peer 
reviewed trade journals were excluded; (2) articles where 
the only CDW aspect reported was the using of CDW 
data were excluded; (3) non-English publications were 
excluded; and (4) articles for which the full-text was not 
available, abstracts and posters were excluded.

The articles included after full-text review were reviewed 
again (CKC, MS, SS, ZW) to abstract and categorize their 
content [5, 7, 12, 13]. The following information was 
abstracted from the included articles: article type; CDW 
focus; CDW design (including CDW architecture, data 
model, data domains included in the CDW and semantic 
data representation); work/improvement foci; CDW 
governance (including governance structure, user support 
tools and documentation, staff training and financial 
sustainability) (Table 1). Though started by topics that 
the authors, who are all data warehousing subject 
matter experts, knew to be emerging or of interest in the 
CDW community, categories and subcategories of the 
information abstracted from the included articles were 
developed iteratively throughout the review. Previously 

(((“Medical Records”[Mesh:noexp] OR “Medical 
Record Linkage”[Mesh] OR “Medical Records Systems, 
Computerized”[Mesh] OR “Health Information 
Management”[Mesh] OR “Health Record” OR “Health 
Record System”)) AND (“Datasets as Topic”[Mesh] 
OR “Databases, Factual”[Mesh:noexp] OR “Database 
Management Systems”[Mesh] OR “Decision Making, 
Computer-Assisted”[Mesh] OR “Information Storage 
and Retrieval”[Mesh:noexp]))
OR
(“data warehouse”[tiab] OR “data warehouses”[tiab] 
OR “data warehousing”[tiab] OR “data repository” OR 
“data repositories” OR “data warehousing”[Mesh] OR 
I2B2[tiab] OR “informatics for integrating biology and 
the bedside i2b2”[tiab] OR BTRIS[tiab] OR “biomedical 
translational research information system”[tiab] OR 
“star schema”[tiab]))
NOT
(“animals”[MeSH Terms])
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abstracted articles were re-reviewed after new categories 
were added so that all information that appeared relevant 
and mentioned in multiple articles was abstracted. Each 
article was abstracted by two assigned reviewers. Reviewers 
recorded their abstraction work in a spreadsheet so that 
the presence of relevant information was systematically 
assessed for each article. The group of four reviewers then 
discussed and came to consensus decisions on articles 
with initial categorization differences. Iteratively, as well, 
through these reflexive discussions, the group discussed 
the varying language used across the articles and their 
understanding of technical topics and current foci within 
the CDW field, refined their understanding and definitions 
of categories/subcategories, and where necessary, 
re-abstracted for thorough, uniform categorizations until 
no further changes were necessary and all categorization 
was completed [5, 7, 12, 13].

Results
The PubMed query returned 1,763 citations for the decade 
spanning 2011–2021 (Figure 1). Ninety-eight citations 
were excluded in the first-round review (30 were non-
English, 66 had no full-text). Another 1,527 citations 
were excluded in the second-round abstract review (1,092 
articles were not related to CDW; 435 described only the 
use of data from a CDW. For the remaining 140 citations, 
full-text articles were reviewed by 4 reviewers, and 3 
articles were excluded. Finally, 137 articles were included, 
abstracted, and analyzed (Appendix 1).

As shown in Figure 2, article numbers increased from 
2011 to 2015. They dropped in 2016 after the former 
high in 2015, but rose again through 2021. For 2021, 
we collected articles until September. More articles 
are expected in the rest of the year during the COVID 
pandemic. Between 2011 and 2021, CDW-focused articles 

Figure 1: Flow diagram of the PRISMA Statement-based article identification, exclusion, and inclusion process.

Figure 2: Ten-year trend for the numbers of CDW articles indexed in PubMed (by the query and after review).
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Figure 3: Publications with the most CDW articles (2011–2021).
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Journal of Digital Imaging

Journal of Empirical Research on Human Research Ethics

Table 1: Themes and descriptions.

Theme Sub-theme Descriptions

Article type This category describes study methodology types, including case study, qualitative study, 
systematic literature review, survey, and discussion. Articles that considered CDW issues but 
were not studies were grouped into the discussion category.

CDW focus This category describes whether the CDW described, built, or enhanced was designed for 
clinical operations and decision-making, clinical research, or both.

CDW design CDW architecture This category describes whether the CDW’s architecture was from a commercial vendor or a 
public architecture. Commercial architecture is used by the CDW project in partnership with 
industry, often from the institution’s EHR vendor, or another proprietary architecture. Public 
architecture is developed by the CDW project at a healthcare institution or governmental agency.

Data model This category describes which data model was used for the CDW discussed and includes 
these sub-categories: CDMs, such as the Patient Centered Outcomes Research network 
(PCORnet), Observational Medical Outcomes Partnership (OMOP), widely used in secondary 
use of health care data to promote interoperability and data sharing; open-source models, 
available for developers to download, modify, and re-use (eg, OpenEHR); and custom models, 
created by a specific institution or project and not generally available for use by others.

Data domain This category describes the data domains presented in the articles as follows: longitudinal 
clinical (eg, demographic, encounter, diagnosis, vital sign, etc.); disease specific longitudinal 
clinical (eg, Alzheimer, obesity, neurological disease, etc.); unstructured clinical; administrative; 
biological molecular; imaging; and blood bank.

Semantic data 
representation

This category describes ontologies or controlled terminologies used in the CDW, including 
existing, customized, and mapping ones.

Work/
Improve-
ment foci

This category describes what technologies or methodologies were a primary focus of 
development or improvement of the CDW, based on each article’s Methods section. 
The methodologies were comprised of the following: data integration, data warehouse 
implementation, data querying, data quality, use of data, data visualization, clinical decision 
making, standardization for sharing, data acquisition, natural language processing (NLP), 
protected health information (PHI).

CDW 
governance

Governance 
structure

This category describes the content that related to data governance, including data 
governance team build, policies, and requirements.

End-user support 
and documentation

This category describes the actions for end-user support, including system user interface, 
data documentation, data report generation and user support team.

Staff training This category describes the actions for CDW staff training, including training aim, method, 
and plan.

Financial 
sustainability

This category describes how to address costs and sustainability or raise revenue to support 
future work.
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in the biomedical literature averaged 12.5 per year 
ranging from 5 to 21.

The 137 articles abstracted were published in 55 
journals and proceedings from three conferences. Sixteen 
journals published two or more included CDW articles 
(69% of the included CDW articles) (Figure 3). Studies 
in Health Technology and Informatics (30 included CDW 
articles) also publishes conference papers from multiple 
informatics meetings. The six publications with the most 
CDW articles (68/137) are informatics journals, as are 
several others.

From a geographical perspective, North America 
and Europe lead with the highest contributions in 
articles numbers, having 61 and 53 respectively. They 
are followed by Asia with 13, Australia with 5, South 
America with 4, and Africa with 1. Notably, eight research 
groups have contributed more than two articles each. 

These groups include those led by Frank Puppe, James 
J. Cimino, Raphael W. Majeed, Andrew Post, Shawn 
Murphy, Griffin M. Weber, Michael Marschollek, and 
Michael G. Kahn.

Article Type
Case studies comprised the most articles, at 122 case 
study articles, followed by 5 qualitative study articles, 2 
systematic literature review articles, 1 survey article, and 7 
discussion articles.

CDW Focus
Over half of the articles reported CDWs that were designed 
to support or supported research only (Table 2). An 
additional 12% of the articles supported research as well 
as clinical operations. This result could be caused by the 
bias of the query.

Table 2: Counts and percentages of CDW focus, architecture, and data model.

Theme/Sub-
Theme

Category Number Percentage Articles

CDW Focus Clinical Research 82 60% [3, 14–94]

Clinical Operation 38 28% [95–132]

Both 17 12% [133–149]

CDW Design: 
Architecture

Public 116 84% [14, 15, 17–36, 38–41, 43–58, 60–69, 72–88, 90–95, 97–104, 
106–109, 112, 114, 115, 117, 118, 121–129, 132–141, 143–146, 148]

Commercial 5 4% [16, 37, 119, 131, 147]

Not reported 16 12% [3, 42, 59, 70, 71, 89, 96, 105, 110, 111, 113, 116, 120, 130, 
142, 149]

CDW Design: 
Data Model

CDM 35 26% [15, 25, 32, 34, 43, 44, 46, 51, 52, 54–57, 60, 62, 64, 65, 73, 
76, 88, 91, 92, 99, 107, 115, 118, 120, 122, 123, 128, 132, 133, 

139, 140, 148]

Custom 31 23% [14, 16–19, 21, 24, 27, 31, 35, 37, 48, 49, 79–81, 86, 90, 94, 95, 
97, 98, 100, 101, 106, 126, 134, 137, 138, 141, 146]

Open Source 2 1% [39, 41]

Not reported 69 50% [3, 20, 22, 23, 26, 28–30, 33, 36, 38, 40, 42, 45, 47, 50, 53, 58, 
59, 61, 63, 66–72, 74, 75, 77, 78, 82–85, 87, 89, 93, 96, 102–

105, 108–114, 116, 117, 119, 121, 124, 125, 127, 129–131, 135, 
136, 142–145, 147, 149]

CDW Design: 
Data Domain

Longitudinal Clinical 
Data

89 65% [14–20, 25, 26, 29–31, 33, 35–37, 40–42, 44–46, 49–51, 
53–60, 62–67, 69, 71–73, 76, 79, 80, 83, 86, 88, 89, 91, 92, 

95, 97–99, 103–108, 114, 115, 117–121, 123–126, 128–131, 
133, 134, 136–139, 142, 144, 145, 147–149]

Disease Specific 
Longitudinal Data

23 17% [21, 23, 24, 27, 32, 34, 43, 47, 61, 74, 77, 78, 81, 84, 85, 87, 90, 
93, 94, 100, 102, 135, 141]

Imaging Data 11 8% [22, 39, 48, 49, 75, 97, 109, 127, 135, 136, 145]

Unstructured Clinical 
Data

11 8% [19, 29, 31, 38, 62, 112, 115, 119, 132, 135, 144]

Administrative Data 4 3% [30, 52, 122, 140]

Biological Molecular 
Data

3 2% [70, 135, 146]

Blood Bank Data 2 1% [101, 135]

Not reported 10 7% [3, 28, 68, 82, 96, 110, 111, 113, 116, 143]
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CDW Design
CDW Architecture
After the initial release of Biomedical Translational Research 
Information System (BTRIS) in July 2009 [24, 28, 135], 
such home-built architectures were used publicly as CDW 
solutions; of 121 articles that reported architecture, only 5 
were commercial, eg, INDEPTH [37] and PCRC BIMS database 
[16]. The studies with the home-built architectures used 
concepts from enterprise data warehousing customized 
architecture, eg, Entity-Attribute-Value (EAV) model [14, 
17]. Of the public architectures, Informatics for i2b2 was 
the most popular platform used, reported in 22 articles 
after 2014. Most CDWs refreshed data by extract-transfer-
load (ETL) methods. Only a few studies used a direct copy 
from the source system method [53] or materialized views 
[119, 121] for a particular study area to provide a query or 
report service. Sixteen articles (7 discussions, 4 qualitative 
studies, 2 case studies, 2 systematic literature reviews, and 
1 survey) did not report CDW architecture. These articles 
did not focus on a specific CDW so architecture was not 
applicable, or the authors did not mention it.

Data Model
CDMs were widely used (36 used CDMs) to map CDW 
data for sharing, but were only sometimes used as the 
data structure itself [122, 139]. Typical CDM for-sharing 
examples include one developed as an interface to serve 
data from i2b2 in FHIR format (SMART-on-FHIR interface 
is the first instance we found that allowed i2b2 sites to 
provide data access in FHIR format) [118]; and another that 
used the i2b2 CDM to provide data to the TriNetX research 
network [73]. Custom data models were designed using 
different schemas, for example, star [141] or snowflake 
[106]. Commercial and custom data models were often 
used for CDW structures, for example, one study used 
another hospital’s published specification from Epic EHR 
system and Clarity data model [86]. Sixty-nine articles did 
not report data model information, comprising 56 case 
studies, 6 discussions, 4 qualitative studies, 2 systematic 
literature reviews, and 1 survey.

Data Domain
Three articles discussed special longitudinal clinical data 
differently than others: one included longitudinal clinical 
data from dental care [139]; the other two [30, 65] focused on 
population and socioeconomic data. Twenty-three articles 
(17%) focused on disease-specific longitudinal clinical data 
collected for specific disease research (Table  2). Among 
these, one collected COVID-19 data with time series data, 
weather, lockdowns, and other variables [90]. Imaging data 
and unstructured data were also prevalent data types, each 
appearing in 11 articles. Also included were administrative 
data (4), biological molecular data (3), and blood bank data 
(2). Ten articles did not mention specific data domains, 
including survey, systematic review, discussion, and 
conference workshop articles.

Semantic Data Representation
Thirty-nine articles discussed or mentioned semantic data 
representation methods used in the CDW. Twenty-four of 
these reported use of ontologies in CDWs, such as i2b2, 

and protégé, which is an HL7 FHIR-driven ontology to 
map with OMOP CDM or additional custom developed 
ontologies in data sources. In 19 articles, CDWs used 
existing standards, including ICD-9, ICD-10, SNOMED, 
Unified Medical Language System (UMLS), and HL7 data 
sharing standards. Five of the articles combined both 
ontology and standards-based terminologies in data 
sources to fit their requirements for CDWs [14, 28, 35, 
125, 149]. Only one study built custom vocabulary for 
intensive care unit (ICU) data [124]. One systematic review 
focused on ontologies used in CDWs [146].

Work/Improvement Foci
Data integration was the most frequent improvement 
focus followed by CDW implementation, data querying, 
data quality and uses of data (Table 3).

CDW Governance
Governance Structure
Twenty-two articles reported on CDW governance 
structures [25, 27, 29, 31, 32, 34, 37, 41, 43, 45, 50, 55, 71, 
85, 87, 97, 103, 105–107, 114, 139]. One of these articles 
mentioned the existing institutional data governance 
structure from CTSA [55]. Ten discussed in varying detail 
their warehouse-specific data governance structure for 
data access, data definition, data release, data quality 
management, and data warehouse procedures [31, 32, 34, 
37, 43, 45, 50, 85, 87, 114] (see Table 4). Nine discussed 
leveraging extant EHR data governance structure for CDW 
data definition [103], CDW data access [25, 27, 29, 139] 
and/or CDW data quality management [25, 27, 41, 97, 106, 
107]. One article described data governance challenges 
and possible solutions across multiple CDWs [105]. One 
article examined CDW practices and issues at CTSA hubs 
including data governance [71]. The reported governance 
foci are shown in Table 4.

End-user Support and Documentation
Forty-five articles mentioned end-user support or documen-
tation, most focusing on support tools. Forty of them 
discussed developing an end-user interface to provide 
data querying, data reporting, and data visualization 
capabilities. Among these, 11 articles indicated that the 
interface built was based on an i2b2 web client [16, 21, 25, 
41, 44, 46, 50, 55, 91, 107, 122]. Four articles discussed end-
user functionality to generate data reports [48, 98, 112, 
141]. One article discussed the provision of a support team 
to assist end-user with the extraction and documentation 
of datasets [37].

Staff Training
Seven articles mentioned staff training requirements. Two 
mentioned that they provided training through a series of 
programs and workshops [37, 114]. Another two provided 
training on privacy and security for all staff [36, 135]. 
The latter would be done in all HCOs today in support of 
HIPAA compliance and lack of mention may have been 
due to its assumed presence. In two of the seven articles, 
a council was formed to address a training need [36, 85]. 
Two articles mentioned staff training challenges and 
requirements [71, 105].
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Financial Sustainability
One article mentioned that they addressed costs and 
sustainability and needed to raise revenue to support 
future work [138]. Another article discussed financial 
sources and sustainability as issues and summarized 
CDWs financial sources [71].

Discussion
The review highlights areas of CDW focus in the literature, 
and exemplar projects, with brief explanation of key 
CDW concepts. Given the necessity of data for health care 
quality improvement and performance measurement 
since the landmark 1999 report To Err Is Human: Building 

Table 3: Counts and percentages for categories of work/improvement foci.

Category Description/Type Number Percentage References

Data Integration Mapped and loaded one or multiple data sources 
to the CDW

45 33% [14–17, 22, 28, 30, 37, 40, 41, 
43–47, 55, 57, 63, 64, 73, 75, 

79–81, 85–88, 90–93, 98, 99, 
102, 109, 110, 124, 126, 129, 

131, 134, 135, 141, 142]

Added Health Information Exchange (HIE) data 5 4% [35, 39, 95, 106, 107]

Extracted data from report documents and 
loaded into the CDW

5 4% [61, 84, 112, 114, 132]

Combined manually entered data and 
electronically imported data

4 3% [21, 23, 78, 136]

Linked to external public data (ie, Socioeconomic 
Index)

1 1% [65]

Collected via portable device 1 1% [94]

CDW 
Implementation

The articles described the process of building 
a data warehouse, including but not limited 
to gather requirements, create infrastructure, 
choose a data model, connect to data sources, 
data import, data governance and data analysis

43 31% [18, 27, 29, 31–34, 39, 41, 46, 
49–51, 69, 70, 76–79, 81, 82, 

85–88, 90, 93, 94, 104, 105, 108, 
109, 115, 117, 122, 123, 125, 
126, 138, 140, 141, 145, 149]

Data Querying The articles described pulling requested data 
from CDW for projects

25 18% [26, 31, 43, 47, 48, 53, 54, 57, 
60, 62–64, 74, 76, 83, 91, 104, 

108, 118–121, 125, 127, 148]

Data Quality The articles described the process of scientifically 
and statistically evaluating data to determine 
whether they meet the quality required for 
projects and are of the right type and quantity to 
be able to support their intended use

13 9% [20, 32, 34, 58, 59, 66, 67, 89, 
98, 105, 134, 137, 147]

Uses of Data 
(Non-clinical 
decision making)

The articles described the purpose for which the 
data were used

10 7% [3, 29, 30, 36, 42, 66, 69, 71, 
101, 146]

Standardization 
for Sharing

The articles described the process of bringing 
clinical data into a common format that 
allows for collaborative research, large-scale 
analytics, and sharing of sophisticated tools and 
methodologies

8 6% [52, 68, 80, 96, 99, 111, 128, 
133]

Data 
Visualization

The articles described a tool that provides an 
accessible way to see and understand trends, 
outliers, and patterns in clinical data by using 
visual elements such as charts, graphs, and maps

7 5% [24, 30, 56, 62, 72, 101, 146]

Clinical Decision 
Making

The articles described a health information 
technology to provide clinicians, staff, patients, or 
other individuals with data, knowledge, and person-
specific information for health and health care

6 4% [24, 30, 97, 103, 113, 116]

Data Acquisition The articles described the process of collecting 
data for a clinical project

5 4% [19, 21, 36, 41, 69]

Protected Health 
Information
(PHI)

The articles described the provision of data 
policy rules built into data warehouses to 
protect health information safety and how 
hospitals and other healthcare providers using 
and sharing protected health information

5 4% [31, 83, 100, 131, 136]
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a Safer Health System, and for clinical research since the 
CTSA program, the lack of emphasis on data warehousing 
is striking. Several factors may be at play. The international 
Good Clinical Practice (GCP) standard for clinical research 
did not emphasize data handling until the 2018 revision. 
Similarly, a recent systematic review of Data Management 
Plan requirements found an overwhelming emphasis 
on data sharing with little attention devoted to data 
collection and processing [150]. Others have attributed 
this to a lingering perception of data collection and 
handling as clerical and largely ignore their impact on 
research results [150, 151]. As evidenced by the literature, 
the lack of scientific consideration is accompanied by 
a lack of evidence-based practice recommendations 
and lack of defined professional competencies, with 
the latter recently called to attention by the Healthcare 
Data Analytics Association (HDAA) [152]. These findings, 
consistent with recent qualitative and survey work within 
the CTSA organizations, underscore the gap between 
the touted importance of data to results and the lack of 
attention and resources necessary to ensure that data are 
capable of supporting research.

CDW architecture: CDW architecture depends heavily 
on the specific data domains, eg, intensive care unit, 
dentistry, or specific disease registries, it is designed to 
store. No one design fits all needs and the literature bears 
out variability across the spectrum from, (1) building 
a data warehouse from scratch – the most frequently 
reported, (2) customizing an existing architecture 
for a specific domain, or (3) using a commercial data 
warehousing product. Since we did not include the 
terms of disease-specific data registry or commercial 
architecture in the query, the architecture reported here 
could under-represent the disease-specific or commercial 
CDWs. The majority, 88% (121) of the articles reported 
whether they were commercial or public architectures 
[153]. The degree to which further details on products 
or schemas was reported, varied across the literature; 
for example, one study described the usage of facts and 
dimensions in building their data warehouse to process 
data from electronic systems [106, 107] and another 
reported the usage of existing warehouse architecture 
using Microsoft products in their implementation [134]. 
In addition, one article reported the commercial product 

name INDEPTH for their warehouse but very limited 
details on the architecture were disclosed [37]. Of the 
public architectures, the majority used i2b2, which is 
similar to the star and snowflake schemas [154], followed 
by domain-specific data repository models that used 
relational tables [4].

Data model: Some CDWs are built on a generic relational 
database data model (as discussed in the architecture 
section). However, many are now constructed using a 
common data model (CDM) and open-source clinical 
data frameworks devised for standard representation of 
health information that provides better data analysis and 
data exchange. However, the term “common data model” 
was not included in the query. The data model reported 
here is only based on the literature as implemented as 
a CDW. It could therefore under-represent the other 
CDMs, except i2b2. In our results, 35 studies utilized 
CDMs that include OMOP, CDISC operation data model, 
and i2b2 one use of which is as an open-source clinical 
data model (see Table 2). Three studies extended the 
i2b2 querying mechanism to support data analysis 
of diverse underlying CDMs, eg, OMOP and PCORnet, 
which provided a means to separate data model and 
querying techniques [60, 91, 122]. One utilized an i2b2 
application programming interface (API) and extended 
it to query OMOP and PCORNet data models, with no 
significant performance degradation in their evaluation 
[60]. Another highlighted the lack of querying interface 
for OMOP and developed an algorithm that can translate 
any given i2b2 query to run against OMOP data model 
programmatically [91]. That algorithm took advantage 
of i2b2’s webclient and its metadata, which prevented 
the need for a full i2b2 data model installation. The third 
used i2b2’s new multi-fact table to use OMOP CDM as a 
source for i2b2 observational data without changes to 
the i2b2 source code [122]. That use case demonstrated 
the combination of OMOP CDM, data management 
of i2b2, and an interface that allows querying of both 
i2b2 and OMOP. No CDM, however, covers all use cases 
and needs, so custom in-house and proprietary models 
specifically designed for the disease domain and type of 
data are still developed [155]. Two studies implemented 
a custom data model to capture perioperative anesthesia 
and omics data [86, 146]S.

Table 4: Governance foci reported.

Governance foci Discussed in detail Mentioned in brief

Data Definition: decision-making surrounding data to be included in the CDW or 
tools for end-users explaining in the CDW

[45, 103] –

Data Warehouse Procedures: including shared institutional decision-making surrounding 
ETL processes, data de-identification, and other standard operating procedures

[31, 43, 45, 50, 55, 
85, 114]

–

Data Access: decision making surrounding end-users’ access policies [25, 27, 29, 31, 32, 
43, 50, 87, 114, 139]

[37]

Data Release: decision-making surrounding approval required for use of data for 
specific projects

[43, 50, 114] –

Quality Management: Oversight quality assurance and decision-making 
surrounding improving the quality of data

[25, 27, 31, 32, 34, 
41, 55, 85, 97, 114]

[43, 106, 107]
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Data domain: CDWs are generally built to provide a 
holistic view of patient care by the inclusion and sometimes 
the integration of other data. This can include external 
data, such as claims; molecular data, such as metabolomics; 
multi-level data, such as viral sequences; environmental 
measures, such as air and water quality; place-based 
social measures, such as neighborhood transience; and 
unstructured data [156]. We found that seven studies 
[19, 29, 31, 62, 115, 119, 144] developed a system that 
combined longitudinal clinical data with unstructured 
documents while four [49, 97, 136, 145] used imaging 
data along with longitudinal clinical data. In contrast, 
two studies focused on single clinical specialty for better 
management and querying [22, 109]. To facilitate clinical 
and translational research, however, combining different 
data domains is important, and only one study by Cimino 
included comprehensive domain representation ranging 
from imaging, unstructured, molecular, blood bank, and 
longitudinal clinical data [135]. An area for additional 
work is developing methodologies for data integration.

Data integration/ETL: Data intake from source systems 
and their integration into a data warehouse occurs through 
a process commonly known as ETL. ETL is a sequential 
process that starts with identifying needed clinical variables 
from the source systems, includes mapping the data into the 
warehouse data model, and then implementing computer 
programs that use the mapping to write the external 
data to the warehouse tables. Common ETL operations 
include deidentification, assignment of unique identifiers, 
reformatting data, recoding data to standard terminologies 
and ontologies, and data linkage. A similar process is 
often followed to deliver data from an institution’s data 
warehouse for secondary use; in this case, the warehouse 
data are often mapped to a CDM that supports pooling 
data from multiple institutions. ETL processes have 
received the most attention in the literature. A systematic 
review focused on ETL and discussed ETL steps in detail 
[149]. Nineteen additional studies discussed ETL and 
focused on: terminology mapping [39, 46, 55, 73, 92, 106, 
107, 124], data deidentification [129], specific data type 
extraction [15, 87], unstructured data ETL [61, 84, 109], 
automatically generated ETL [40, 46, 114, 124], re-use 
ETL [135], real-time ETL [88, 129], and ETL efficiency [86]. 
Adding these health care-specific practices to general data 
warehousing frameworks may provide a foundation for 
health care-informed ETL best practices in health care data 
warehousing. Alternatively, others such as a FHIR-to-i2b2 
transformation toolkit [123], which directly transforms 
primary EHR data from standardized FHIR resources into 
I2b2 CDM, focused on automating ETL processes and 
decreasing the laborious creation and maintenance of ETL 
processes.

Data quality: Clinical decision-making and research 
that relies on data from CDWs require high-quality data. 
Quality management was an important area for CDW 
development. However, only 9 per cent (13) of the articles 
reported data quality assessment (DQA) effort (11 case 
studies and 2 discussion papers). Rule-based [20, 34, 
66, 98, 137] and redundancy-based [20, 58, 134, 147] 
methods were the most commonly used DQA methods (in 

5 and 4 articles, respectively). Crowdsourcing [34], data 
profiling [32] and distribution method [67] were reported 
by one article each. Seven articles assessed different data 
quality dimensions, including completeness [20, 58, 
66, 98, 147], validity [20, 32, 58], consistency [66, 98], 
accuracy [98, 147], plausibility [66, 67] and timeliness 
[20]. Different DQA processes were identified from nine 
articles, including routine DQA in the CDW [20, 32, 34, 67, 
98, 147], DQA during data extraction [58], comparing data 
in the CDW with its source data [134], and DQA at data 
entry [137]. Only two articles reported having processes 
in place and commitments from source system owners to 
help to investigate, remediate, or make changes to prevent 
future occurrence of data quality problems [20, 98].

Semantic data representation: The key to successfully 
integrate and represent clinical data is through the use of 
semantic interoperability methods that describe complex 
health care information in computable ways [157, 158]. 
Standardized clinical terminologies and ontologies are 
ways that provide semantic representation of clinical 
concepts to achieve automated interoperability and to 
enable the best possible use of such data [159, 160]. 
However, a challenge is that any one terminology or 
ontology is not suitable for all purposes. The majority 
of the studies in our review used or extended i2b2 
ontology in their work because of its simple, flexible, 
open-source data representation [161]. Two studies 
[15, 33] adopted the Protégé ontology framework for 
building a custom ontology whereas one study [135] 
developed a custom tool to address the practical needs 
of real-world data and to address the limitations of the 
i2b2 ontology eg, support for multiple hierarchies. Use 
of standard terminologies is vital to facilitate data sharing 
for clinical research and automated clinical decision 
support [162]. The majority of the studies used ICD-9 
and ICD-10 standard terminologies for concept mapping. 
Systemized Nomenclature of Medicine – Clinical Terms 
(SNOMED-CT), Logical Observation Identifiers Names and 
Codes (LOINC), and Unified Medical Language System 
(UMLS) were also used frequently. One study [133] used 
ICD-9, SNOMED, UMLS, and LOINC for their mapping 
needs, and two studies used both ICD and CPT [29, 32]. To 
fully exploit the potential of both standard terminologies 
and ontologies, five studies developed custom ontologies 
that incorporated standard terminologies such as ICD, 
UMLS, and SNOMED [14, 28, 35, 125, 149]. One study 
described the limitations of terminology mapping tools 
in Intensive Care Units (ICU) and created a concept 
vocabulary of 942 clinical parameters to link concepts 
during the COVID-19 emergency [87]. Additional work 
is needed to build easy-to-use flexible terminology 
mapping tools for streamlined concept mapping in ICU 
settings. Four studies used document-based clinical 
document architecture (CDA) and other HL7 data 
standards [19, 35, 106, 107] and one study [57] used 
Clinical Data Interchange Standards Consortium (CDISC) 
data standards rather than terminologies and ontologies 
for knowledge representation and sharing. A likely future 
direction for CDWs is more HL7 FHIR data standards-
based representation work for interoperability.
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CDW governance structure: Among the articles that 
mentioned governance structure, two main types of 
structure were identified, including extant EHR governance 
(focus on data itself) and warehouse-specific governance 
(including data management and data warehouse 
procedures) with nine and 10 articles reported, respectively. 
No articles after 2015 referred to extant EHR governance 
structures, but five reported warehouse-specific ones, 
which is a more comprehensive and specific solution to 
satisfy data-use related regulatory requirements.

End-user support and documentation: CDW end-
users are not familiar with the technical aspects of their 
projects and lack of data literacy, which is a challenge for 
CDW staff [105]. Many articles discussed query interfaces 
or tools to support end-users. However, only two articles 
mentioned the need to improve end-users’ data literacy 
with respect to knowledge about clinical data, use of EHR 
data in research, and protection of patient privacy, which 
highlights an area for more work [71, 105].

Staff training: Although two articles mentioned that 
they provided staff training through a series of programs 
and workshops to support data literacy [37, 114], none 
reported needs of assessment results, position-specific 
training requirements, or training plan details. To our 
knowledge, there are no publicly shared training modules 
for health care data warehousing professionals. HDAA has 
recently undertaken a campaign to identify professional 
competencies for healthcare data warehousing [152].

Financial sustainability: Only two (2/137) of the articles 
mentioned CDW cost models or sustainability [71, 138]. 
However, given that 48 articles mentioned grant funding, 
usually in the Acknowledgements section, it is likely that 
CDWs lack long-term funding and sustainability. One 
article discussed two approaches that enterprise data 
warehouses for research use to fund themselves: fee-for-
service and full-time equivalent funding, but the article 
notes that the ability to fulfill requests does not keep up 
with demand, which indicates financial and staffing deficits 
given demand [71]. In light of the cost pressures in AMCs, 
a shift in CTSA emphasis, from clinical and translational 
research (CTR) support to clinical and translational 
science (CTS), and the growing need to provide data to 
support the development of clinical researchers and the 
sustainability of clinical research programs needs to be 
prioritized. In addition, information on the real costs and 
benefits of data warehousing to institutions is drastically 
and urgently needed.

Geographical differences: We categorized and analyzed 
the articles based on geographical distribution. North 
America and Europe lead the research in CDWs, though 
their emphases differ as a result of variations in health 
care systems, research focus, regulatory environments, 
and data infrastructure. In North America, CDW 
research concentrates on integrating CDWs within large, 
complex health care delivery systems, including hospital 
networks, insurance companies, and research institutions. 
Many CDWs are developed by individual health care 
organizations or through collaborations between 
academic and private sectors. In contrast, European 
CDW research places emphasis on national or regional 

health care systems, aiming for unified data integration 
across public health networks. This approach is often 
supported by government-led initiatives or by large-scale 
public health projects, fostering uniform standards and 
interoperability across countries. This leads to differences 
in innovation. In North America, there is a high emphasis 
on leveraging advanced analytics, artificial intelligence 
(AI), and machine learning to derive insights from clinical 
data. In contrast, Europe has a strong focus on public 
health informatics, population health management, and 
the integration of social determinants of health into their 
CDW research and applications.

Diversity of contributing groups: The diversity of 
contributing research groups is notable in the field, as 
evidenced by the author distribution across 137 articles. 
Eight key research groups stand out, each contributing 
three to five articles. In addition, numerous other groups 
have provided valuable insights, contributing fewer than 
two articles each. This distribution highlights the essential 
need for cross-validation and collaborative efforts to 
enhance the robustness and generalizability of findings 
across different contexts and settings. Such collaboration 
among diverse research groups is crucial for advancing the 
field.

Gap analysis: We reviewed 2021 to 2022 HDAA 
conference presentations and 2023 HDAA conference 
submitter-identified tags to distill 30 current topics at the 
applied practitioner forefront [2]. The 50 presentations 
in 2021 and 2022 conferences covered 26 topics. Among 
these, predictive analytics (17), machine learning (8) and 
staffing (4) were the top 3 topics. Data lakes, data fabric, 
Microsoft Azure Cognitive Service and ChatGPT-4 were 
added in 2023 as new tags. We matched these topical 
categories to our included articles. Articles could be 
matched to more than one category. Figure 4 shows 
where the published literature aligns with topics from 
HDAA and where there are particular publication gaps. 
Thirteen topics were covered by at least 10 articles, and 17 
topics by less than 10, of which, equity, work-life balance, 
career development, and specific data technologies or 
services (eg, data fabric, data mesh, data lakes, Microsoft 
Azure Cognitive Service, ChatGPT-4) were not covered by 
any articles. Some topics have minimal or non-published 
articles due to the emphasis of the query, such as data 
lakes and Microsoft Azure Cognitive Service. However, 
these topics should be discussed in the literature as do 
similar articles involving technical developments and 
CDW-related sociotechnical issues related to staff, end-
users, and decision-makers. To reach a state of health 
care data analytics maturity, more work and published 
dissemination on data quality improvement and 
approaches for predictive analytics are needed [163].

Lastly, the research methods found in the literature 
were largely single site demonstrations or opinion articles 
based on experiences at a single site. To wit, all were one 
site/project case studies, discussions, or reviews except 
for six articles: five qualitative studies and a survey. Four 
of the five covered single aspects: two single-site/project 
articles [70, 100] and two multi-site articles [110, 116]. 
Only two were multi-site, multi-aspect studies, a survey [3] 
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and one qualitative study [71]. To increase the evidence-
base for CDW practice, more multi-site, multi-aspect CDW 
benchmarking and reporting are needed.

In recent years, specific requirements for CDWs have 
emerged, driven by the unique needs of clinical research 
and the growing complexity of data. Best practices specific 
to CDWs have been evolving to meet the challenges of 
managing clinical research data. These practices include: (1) 
data integration and interoperability to facilitate seamless 
integration of diverse clinical data sources and ensure 
interoperability within the CDW; (2) data governance to 
ensure data integrity, confidentiality, and compliance with 
regulatory requirements within the CDW environment; 
(3) data quality to implement procedures to ensure high-
quality, accurate, and reliable clinical data within the CDW; 
and (4) metadata management to maintain comprehensive 
metadata to support data discoverability, provenance 
tracking, and data lineage within the CDW.

Despite the established best practices and newly 
articulated requirements, significant gaps remain in the 
CDW literature that need to be addressed to enhance the 
efficacy of clinical research. The gap analysis revealed 
the following issues. First, while general data integration 
practices are well-defined, there is a lack of detailed 
strategies tailored to integrating diverse clinical data 
specific to research needs. Second, current data quality 
practices may not sufficiently address the nuances of 
clinical research data, such as the need for high accuracy in 

longitudinal studies. Third, many CDWs are not designed 
to scale efficiently with the rapidly growing data volumes 
and evolving research methodologies. Fourth, the lack of 
robust metadata and provenance tracking systems can 
hinder data discoverability and reproducibility in clinical 
research. Last, ethical considerations and patient consent 
protocols are not always integrated seamlessly into data 
management practices. By addressing these gaps and by 
implementing the recommended best practices, we can 
significantly enhance the utility and reliability of CDWs 
in clinical research settings, ultimately leading to more 
robust and impactful research outcomes.

Limitations: There are several limitations in this review 
that we wish to acknowledge. First, we only searched the 
query in PubMed as it is a comprehensive resource in the 
clinical arena. We could retrieve more related literature 
with other search engines. Second, we included the terms 
of medical record in the query to cover more related 
literatures. However, this process might miss the articles 
that did not mention the terms of medical record and get 
noisy articles. Beside medical records, the specific data 
registry, such as cancer, cardiovascular, and COVID data, 
are important considerations, but it was beyond the scope 
of this review. Adding terms of specific disease registry 
would return more CDW articles. Third, we emphasized the 
literature as implemented as a CDW, especially academic-
implemented CDWs, due to only including the terms of 
i2b2 in the query. Doing this led to an over-representation 

Figure 4: Gap assessment between what the CDW literature addresses and topics that need more publication to advance 
knowledge-sharing and CDW maturity.
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of i2b2 use and an under-representation other CDMs, 
commercial CDWs, and specific methodologies, such as 
data model and data quality. This bias could be corrected 
by including the terms of CDM, commercial CDWs, 
OMOP or OHDSI (Observational Health Data Sciences 
and Informatics), or by expanding the review to include 
EHR-published papers (such as EHRN.org). Last, we did 
the final query run in September 2021. However, an 
explosion of publications related to CDW happened 
after 2021 as a result of the COVID pandemic. The query 
needs to be modified and re-run to get more recent and 
comprehensive information.

Conclusions
The study summarizes the studies from 2011 to 2021 
with important topics in CDW. It indicates the topics that 
have been significantly developed and the aspects that 
need additional focus and reporting in CDW between 
existing general data management best practices and 
recently articulated requirements for research data. More 
multi-site and multi-aspect studies are needed to foster 
maturity at CDWs. The findings of this scoping review will 
help readers to understand current CDW methodologies 
and improvement foci and we hope will inspire HCOs 
to invest in CDW deployment, ongoing optimization for 
expanded utility of existing CDWs, and increased CDW 
benchmarking and knowledge-sharing.

Summary table
What is known about this problem:

1. Significant efforts have been made by HCOs to 
develop CDWs.

2. CDWs have proved their value in clinical decision 
making and clinical research secondary data use.

What this article contributes:

1. The article reviews and summarizes the CDW stud-
ies from 2011 to 2021 based on CDW focus; archi-
tecture type; data model; data domain; work and 
improvement foci; semantic data representation; 
governance structure; end-user support tools and 
documentation; staff training; financial sources; 
and sustainability.

2. The article indicates the topics that have been 
significantly developed and the aspects that need 
additional focus and reporting in CDW.

3. The findings should inspire HCOs to invest in CDW 
deployment, ongoing optimization for expanded 
utility of existing CDWs, and increased CDW bench-
marking and knowledge-sharing.
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