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The integration of artificial intelligence and machine learning (AI/ML) in clinical trials offers immense 
potential to reshape drug development and research efficiency. This review explores the multifaceted 
landscape of AI/ML applications in clinical trials including seven use cases of AI/ML that aim at improving 
data quality and enhancing patient outcomes and clinical trial successes. We discuss good machine learning 
practices focusing on clear scope definition, transparent risk-proportionate management, and robust 
feature engineering. We also highlight privacy-preserving data-sharing techniques like federated learning 
and the role and the risk of using large language models in patient recruitment, data capture, clinical 
decision support, patient engagement, and trial design optimization. This review highlights the potential 
of aiding clinical trials through the responsible use of AI/ML, while recognizing the challenges (e.g., 
generalizability, transparency, and robustness) as well as ethical considerations including patient safety, 
privacy, and human rights. It also serves to guide interested parties towards the responsible and effective 
integration of these technologies with clinical trials.
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Introduction
Artificial intelligence (AI) and machine learning (ML) 
technologies are rapidly transforming the healthcare 
sector, holding immense potential to reshape the 
landscape of medical practice and clinical research, 

improving both the patient experience and clinical 
outcomes.1,2 AI/ML adoption is also catalyzing major shifts 
in the conduct of biomedical research by facilitating rapid 
analysis of big data, enabling researchers to gain valuable 
insights at an unprecedented pace.3

The pharmaceutical industry has already begun 
harnessing the power of AI/ML throughout the drug 
discovery and development process.4 This shift presents 
unique opportunities for the design, conduct, and analysis 
of more efficient and effective clinical trials. However, as 
the role and implementation of AI/ML in clinical trials 
continues to expand and evolve, there arises a need for 
good clinical practice (GCP) advice and assessments. Such 
GCP perspectives are essential to evaluate and ensure 
the quality, integrity, and reliability of AI/ML-driven data 
submitted to regulatory agencies, crucial for supporting 
the safety and efficacy of medical products and regulatory 
decision-making.5

In response to these pivotal developments in AI/ML 
adoption in clinical drug development, the European 
Medicines Agency’s (EMA) GCP Inspectors Working 
Group hosted two meetings in 2020 and 2021. These 
meetings were dedicated to exploring the integration of 
AI/ML in clinical trials. The 2020 meeting delved into the 
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characterization of the ideal conditions, prerequisites, and 
illustrative real-world use cases for AI/ML in biomedical 
research and therapeutic development.6 Building upon 
this foundation, the 2021 meeting explored the nuances 
of good ML practices while navigating the ethical and 
regulatory considerations that the integration of AI/ML 
entails.7

We acknowledge that several years have passed since 
these meetings were held. However, the foundational 
considerations remain highly relevant in light of the 
evolving use of AI/ML technologies in clinical trials. 
This time lag underscores the importance of continuous 
reflection and underscores the value of publishing 
periodic summary papers to capture key insights, assess 
emerging developments, and inform ongoing efforts 
in responsible AI/ML implementation within clinical 
trials.

In this paper, we aim to shed light on the critical 
considerations arising from these meetings, offering a 
comprehensive overview of the key discussion points, 
while also considering developments that have since come 
into view in this quickly evolving field. By distilling the 
insights and knowledge shared during these gatherings, 
and through our own practice with AI/ML, we aim to 
chart a course towards harnessing the full potential of AI/
ML technologies in clinical trials while upholding the GCP 
standard of patient safety and trial integrity to ultimately 
advance health outcomes for all. It is important to note 

that the principles and suggestions presented herein 
are intended to be high-level rather than prescriptive, 
recognizing the need for flexibility in application across 
diverse contexts.

Overview of AI/ML Approaches and Their Role 
in Global Clinical Trials
Before providing a comprehensive examination of AI/
ML applications in global clinical trials, it is important to 
delineate the different approaches employed throughout 
the drug discovery and development continuum. 
Table 1 offers an overview of the different types of AI/
ML approaches used in drug development, which include 
supervised learning, unsupervised learning, reinforcement 
learning, transfer learning, natural language processing 
(NLP), and generative models.4 AI/ML technologies have 
utility across the entire spectrum of drug development, 
starting with basic research and target identification, 
novel molecule generation, and extending through to 
clinical trials and market access (Figure 1).4 Specifically at 
the clinical trial stage, ML methods are currently making 
substantial contributions by:

•	 Evaluating and ranking compounds based on their 
potential for success.

•	 Anticipating and mitigating toxicity events.
•	 Enhancing patient recruitment efforts for Phase II and 

III trials.

Table 1: Types of AI/ML approaches in drug development.

AI/ML Approach Description Potential Use in Drug Development Refs

Supervised Learning Uses labelled data to discover predictive 
models 

Predicting drug response, placebo response, 
and adverse events. Also used to discover novel 
drug targets

11

Unsupervised Learning Uses unlabelled data to discover patterns 
or structures in the data

Helping to identify unknown patient 
heterogeneity, and explore complex 
biochemical factors driving drug response

11

Semi -Supervised and 
Self Learning

Combines a small amount of labeled data 
with a larger pool of unlabeled data to 
improve predictive accuracy; iteratively 
labels and trains on unlabeled data, 
relying on their own predictions to refine 
learning

Analyzing sparse or incomplete clinical trial 
data by combining small, labeled datasets 
with larger unlabeled datasets, uncovering 
biomarkers, subpopulations, or drug response 
patterns while reducing the need for extensive 
labeled data collection

12,13

Reinforcement Learning Enables machines to learn by interacting 
with an artificial interactive environment 
under a reward scenario

Optimizing the selection of molecules for 
synthesis; designing adaptive clinical trials; 
discover patient response personas

14

Transfer Learning Uses knowledge gained from one task 
to improve the performance of another, 
often related task

Overcoming limitations of small datasets in 
drug development; leveraging knowledge from 
related domains; using pre-trained neural 
networks for image analysis in medical imaging 
and drug discovery

15

Natural Language 
Processing and Large 
Language Models (LLMs)

Enables computers to process human 
language and generate human readable 
explanations

Mining scientific literature, patents, and clinical 
trial data for relevant insights to aid drug 
discovery and provide explainability

16

Generative Models Uses large amounts of data including 
molecular Statistical Machine 
Intelligence and Learning Engine 
(SMILES), patient descriptors, and 
biochemistry for pre-training

Allowing groups to generate artificial instances 
of patients to increase sample sizes and better 
understand patient populations, and it is 
currently the “go-to” method by which new 
drugs are discovered through AI

17,18
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•	 Enriching eligibility criteria for improving drug and 
minimizing placebo response.

•	 Providing enrichment criteria to de-risk clinical trials.
•	 Creating predictive models using digital twins.
•	 Developing biomarkers to enable precision medicine 

applications.8

Recent strides in transformer-based methods at the 
center of large language models (LLMs) have ushered in 
novel possibilities.9,10 LLMs offer significant potential to 
communicate insights in a clear and accessible manner. 
However, their effectiveness in clinical trial settings 
depends on the prior application of advanced machine 
intelligence methods capable of extracting meaningful, 
patient-level patterns from complex data. These upstream 
systems perform the critical task of elevating raw 
information into structured insights, which LLMs can then 
contextualize and present to clinical trialists. This process 
strengthens the connection between scientific discovery 
and clinical trial leadership by allowing for more informed 
decision-making.

The optimal integration of AI/ML methods in clinical 
trials hinges on three pivotal domains:

1. Data Assets: Data assets serve as the raw materials 
for ML algorithm training, encompassing data gen-
erated beyond traditional clinical trials, such as real-
world data (RWD) as well as previous trial data that 
can be leveraged to enrich algorithm training.11,12 
Harnessing this wealth of data through the power 
of AI/ML empowers researchers to gain deeper in-
sights, optimize patient selection, and ultimately 
accelerate the development of more effective and 
personalized treatments.

2. Advanced Analytical Software: The robust man-
agement of training datasets and algorithm valida-
tion is facilitated by advanced analytical software 
applications.13 These tools serve as indispensable 
facilitators in the AI/ML journey.

3. Next-Generation Computational Capabilities: 
Next-generation computational capabilities may pro-
vide opportunities in AI that are not currently feasible 
using classical computational methods. These capa-
bilities may accelerate algorithmic processing and 
may open doors to modelling biological and chemi-
cal phenomena at the quantum level. While current 

hardware platforms pose limitations in this regard, 
ongoing efforts are poised to overcome these barriers.

The rapid advancements in graphics processing 
unit (GPU) technology are enabling the training of 
massive foundational transformer-based technologies. 
Pharmaceutical companies are leveraging these innovations 
by partnering with LLM providers to develop customized AI 
systems. These transformer-driven technologies, powered 
by increasingly powerful GPUs, are being applied to critical 
areas such as drug discovery, biological simulations, and 
the analysis of Electronic Health Records (EHRs), among 
other drug development applications.14,15

Foundational advances in genomic sequencing, 
transcriptomics, epigenetics, and mass spectrometry 
technologies have independently contributed to redefining 
the classification of advanced malignancies. Building 
on these developments, AI/ML methodologies are now 
increasingly being leveraged to enhance and accelerate 
this progress by integrating and analyzing complex, high-
dimensional datasets.16,17 For example, these technologies 
have enabled disease classification that transcends 
traditional distinctions such as anatomical location 
(e.g., lung vs. colon cancer) or histopathological features 
(e.g., squamous vs. adenocarcinoma), in favor of more 
precise molecular characterizations (e.g., gene expression 
profiles, protein levels, microRNA signatures).18 In 2017, 
the US FDA approved an immune checkpoint inhibitor 
for advanced solid malignancies exhibiting a common 
molecular phenotype, regardless of the anatomical 
location or histopathology of the tumors.19 This has paved 
the way for precision therapies and clinical trial patient 
enrichment strategies that optimize risk-benefit profiles 
by leveraging multiomic data and algorithm-trained data 
assets. AI/ML technologies have the potential for global 
clinical trials to advance patient care by using these 
modalities of data to reveal novel taxonomies of disease 
through this high-resolution lens. This is helping with the 
pursuit of elucidating disease mechanisms beyond the 
classical organ model.

Exploring the Application of AI/ML in Clinical 
Trials: Seven Real-World Use Cases
In this section we describe seven use cases that were 
presented at the AI/ML workshop meetings hosted by 
EMA’s GCP Inspectors Working Group that showcase the 

Figure 1: Use and application of AI/ML throughout the entire drug development process. Created and modified 
with permission from Schaltenbrand 2020.19
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versatile applications of specific AI/ML methods in clinical 
trials, underscoring their potential:

Case 1: Smart Data Query
Traditionally, data managers have been responsible for 
identifying discrepancies and generating queries using 
manual techniques such as spreadsheets. ML introduces 
what is referred to as a “Smart Data Query” that predicts 
discrepancies, elucidates the reasons behind them, and 
auto-generates query text, designed for “human-in-the-
loop” validation.20

One foundational case that helped shape the 
development of these newer Smart Data Query approaches 
involved matching adverse events to concomitant 
medications, a task that requires a large volume of data 
for identifying discrepancies and clinical inference to 
understand the potential relationship between drugs and 
adverse events. While this use case may now appear dated, 
it demonstrated how ML could augment a traditional data 
review process. In this particular case, a combination of 
semi-supervised learning and clinical inference models 
were employed to identify discrepancies between adverse 
events and concomitant medications – a task requiring 
both data analysis and clinical development. A human-
in-the-loop approach enabled data managers to assess 
the logical coherence of concomitant medications with 
adverse events. Testing of the model’s accuracy involved 
comparing historical queries raised by data managers 
with those generated by the ML model. The results of 
these unified human/ML models revealed that they 
achieved an 85% to 90% accuracy range, reducing the 
time required from data entry to query generation by 50% 
and significantly streamlining the entire workflow.20,21 
This case laid important groundwork for subsequent 
advances in Smart Data Query systems, many of which 
now incorporate similar human-in-the-loop mechanisms 
and logic-driven inference at more sophisticated levels.

Case 2: Addressing Data Attributability Challenges 
in Wearable Devices Using AI/ML Fingerprinting 
Techniques
In recent years, the adoption of digital health technologies, 
such as wearables, has increased the remote collection 
of trial endpoint data from study participants. Unlike 
traditional electronic data capture (EDC) systems that rely 
on user identification through access controls, wearables 
present a unique challenge as they often lack the ability to 
attribute data to the individual wearers. AI/ML methods 
provided an opportunity to overcome this challenge.22,23

In this example, AI/ML was used to create a distinctive 
data fingerprint, as a digital biomarker, for each user 
by analyzing raw actigraphy data.24 This entailed the 
application of pattern recognition techniques to 
analyze visual representations of three-minute snippets 
of actigraphy data graphs. Leveraging this wealth of 
identifiers, the program created digital fingerprints 
that achieved high accuracy in matching the data to the 
respective wearers.25 This use case serves as an example 
of the potential of AI/ML to overcome complex data 
attribution challenges, enabling more reliable and 
insightful clinical trials.

Case 3: Enhancing Protocol Deviation Trending
Protocol deviation (PD) trending is essential for ensuring 
patient safety, regulatory compliance, and overall data 
integrity in clinical trials. While central monitoring of 
data within EDC systems is a foundational tool, it is 
insufficient on its own for comprehensive PD detection. 
Many deviations originate or are documented outside the 
EDC—often buried in free-text fields within Clinical Trial 
Management Systems (CTMS), monitoring reports, or 
site logs and communications. A major challenge arises 
when deviations are logged in open-text fields without 
predefined categories, leading to a large proportion being 
labeled as “other” or “non-classified”. This limits visibility 
and impairs the ability to trend meaningful patterns 
across sites or studies. As a result, the PD trending process 
often becomes burdensome and time intensive. LLMs 
offer a transformative solution by enabling the efficient 
classification of PDs into predefined categories using 
advanced NLP techniques, thereby enhancing study 
oversight and streamlining operations.

In this example, a dataset of 60,000 PD records 
contained free-text descriptions that require manual 
classification into 25 subcategories.26 LLMs, such as 
Generative Pre-trained Transformer (GPT)-based systems, 
can analyze this data by leveraging pre-trained language 
models to understand the context and semantics of 
the text. These models can classify PDs directly or can 
generate structured labels that map deviations to their 
respective subcategories, significantly reducing the 
reliance on manual review (e.g., free-text description of 
“participant missed Visit 3 due to transportation issues” 
could be mapped to a category of “Missed Visit/Visit Out 
of Window”).

A practical workflow involves using LLMs for initial 
processing, where the models identify patterns, extract 
relevant features, and map deviations to predefined 
subcategories based on their textual content. This can 
be further enhanced by integrating techniques such as 
document-term matrices and word embedding models 
like Word2Vec to preprocess and enrich the dataset. These 
transformations ensure the data are in a format suitable for 
traditional ML classifiers. Subsequently, human expertise 
is applied to validate and refine the training dataset, 
creating a robust feedback loop. For instance, an LLM 
could replace or could complement traditional NLP and 
shallow ML methods, such as support vector machines, 
which previously achieved an 84% classification accuracy 
in a similar scenario. The LLM’s ability to contextualize 
and understand nuanced language would likely improve 
accuracy and expand applicability, particularly for rare 
or ambiguous deviations. Additionally, LLMs can provide 
real-time insights by identifying trends and anomalies in 
PD data, enabling proactive measures to mitigate risks.

By integrating LLMs into the protocol deviation 
workflow, clinical trial teams can reduce the time and 
effort required for manual classification, improve the 
accuracy and granularity of PD categorizations, and ensure 
that critical safety and compliance issues are addressed 
promptly. This not only enhances operational efficiency 
but also fosters a higher standard of patient safety and 
data quality in clinical research.
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Case 4: Use of External Control Arms
Randomized controlled trials are the gold standard for 
assessing the efficacy of an intervention.27 However, 
when randomization is not possible, such as for long-
term or rare outcomes, the concept of an external 
control arm offers an alternative in the study design.28 
Additionally, while randomization may be possible, it can 
sometimes be impractical or overly costly, particularly 
when robust data is already available that satisfies 
the defined criteria, including the standard of care. 
This involves using individual patient-level data from 
historical trials in the same indication where subjects 
meet similar eligibility criteria and baseline demographic 
and disease characteristics that statistically match those 
in the experimental arm of the current trial. AI/ML 
can identify patients who meet eligibility criteria and 
apply propensity score matching to balance baseline 
characteristics.29,30 A challenge with the propensity score 
approach is in identifying enough historical patients who 
precisely meet these conditions to allow for statistically 
valid conclusions. Another issue that arises when trying 
to use historical patient data is that it does not consider 
the nuanced changes that occur in patient populations 
over time, and the various factors embedded in a clinical 
trial that have a non-trivial effect on drug and placebo 
response. These factors include the protocol, interactions 
with the scientific and medical staff running the trial at 
the various sites, and other uncontrollable conditions 
(e.g., environmental and political disruptions).

In a case study, the effectiveness of an AI/ML approach 
was tested using historical non-small cell lung cancer 
clinical trials.31 One trial was selected as the target trial 
and other trials were used to build the external control 
arm. This methodology was employed to select patients 
who met the key eligibility criteria and required the 
appropriate study treatment to address the research 
question. This yielded overlapping survival curves, 
insignificant log-rank test results, and hazard ratios 
approximating one, suggesting similar outcomes between 
the external control arm to those in the target trial.31 This 
case study highlights the potential applicability of AI/ML 
derived models to efficiently overcome challenges faced in 
clinical trial analysis when randomization is not possible.

Case 5: Streamlining the Complaint Handling Process 
with ML Algorithms
Complaint handling in the pharmaceutical industry is 
a resource-intensive process, involving data entry of 
the complaint, manual review, and the categorization 
of complaints in free-text systems. Such information is 
used to determine further action, including if regulatory 
notification is needed. AI/ML algorithms can help to 
automate these processes.32

In this example, approximately 19,000 monthly 
complaints spanning two years and encompassing 16,000 
products were used as training data to automate the 
complaint handling process, with the goal of predicting 
product experience codes and fully integrating this 
information with the client’s enterprise complaint 
management system. At first, a random forest algorithm 
was utilized, but later deep learning sequential algorithms 

were utilized using the TensorFlow framework in order to 
overcome memory issues. The resulting model achieved 
accuracy rates that ranged from 86% to 98% for different 
product experience codes, with an overall accuracy of 92%. 
An intuitive user interface was also developed to allow 
users to easily access and apply the recommendations and 
predictions.20 This use case exemplifies how AI/ML can 
streamline complaint handling, improve accuracy, and 
reduce resource demands.

Case 6: AI for Patient Stratification in the Diagnosis 
Process
Text analytics, facilitated by AI/ML, have the potential to 
refine information processing for patient stratification 
during the diagnostic process in clinical practice and trials. 
For example, clinicians can copy and paste unstructured 
data from medical records into commercially available 
software which quickly and effectively extracts and 
organizes relevant information according to parameters 
such as medical, laboratory, and genetic tests and values.33

In this case example, an AI/ML system was developed 
to support and expedite rare disease diagnosis.34–36 
This platform employs neural networks for advanced 
phenotyping to match symptom descriptions to Human 
Phenotype Ontology terms, and optical character 
recognition for text extraction from images. It then uses 
Exomiser, a Java program that finds potential disease-
causing variants from whole-exome or whole-genome 
sequencing data, to organize and evaluate patient mutation 
data. The machine then aggregates multiple pathogenicity 
scores and filters to suggest potential differential diagnoses 
to the clinician. The result is a stratified view of patients 
based on likely diagnostic profiles. By leveraging these 
AI/ML-driven insights, clinicians can identify biologically 
meaningful subpopulations with distinct diagnostic 
signatures. This stratification enables more accurate 
and timely diagnosis and supports targeted treatment 
pathways for those most likely to respond, increasing the 
effectiveness of therapeutic interventions and enriching 
the evidence base in clinical research.34

Case 7: AI-Enhanced Patient Enrichment for Placebo 
and Drug Response
Pharmaceutical companies employing control arms in 
clinical trials face the challenge of placebo response 
confounding drug response results.37 Particularly in 
psychiatric trials, specific clinical scales are rich in 
psychological and attitudinal insights that enable AI to 
create placebo response models that can be used to enrich 
future trials.38

In one early example, a set of scales including the 
Montgomery-Asberg Depression Rating Scale, Beck’s 
Depression Inventory, and Hamilton Anxiety Rating 
Scale were used in a bipolar depression trial.38 A classical 
ML method was used to segment the trial participant 
population and reveal explainable factors for placebo 
response. The resulting subpopulations were then used 
to train a mathematically augmented ensemble tree 
model to distinguish placebo responders from non-
responders. The mathematical augmentation involved a 
specialized geometric embedding that introduces a kind 
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of distance between patients. Validation was performed 
on a completely separate patient trial and demonstrated 
generalizability with an 87% accuracy. This model was 
able to categorize trial participants as either placebo 
responders, placebo non-responders, and unknown.

Recent advances in ML have extended shallow methods, 
such as ensemble trees, through integration with LLMs 
and novel mathematical approaches tailored to small 
data sets.39 Small data sets pose significant challenges 
due to their incomplete representation of underlying 
patient population distributions. However, emerging 
mathematically augmented techniques enable the 
identification of subpopulations with high effect sizes, 
offering critical insights into which patients are most 
explainable and how they can be prioritized using 
enrichment criteria.

These advanced methods rank patient subpopulations 
by their potential to optimize drug response rates, while 
LLMs augment this process with qualitative insights to 
refine and enhance the rankings. When applied early, such 
as in Phase 2 trials, these approaches provide actionable 
criteria for subsequent trial phases. The derived insights 
inform the design of inclusion and exclusion criteria, 
aiming to reduce placebo responses and maximize 
drug efficacy in follow-on trials. Importantly, the 
contemporaneous use of small data sets avoids biases 
introduced by older or external datasets, preserving the 
trial’s relevance and specificity.

By leveraging AI/ML to identify subpopulations with 
high effect sizes, clinical trialists gain insights into the 
most pertinent factors driving responses in their study 
population. These methods allow for a finely tuned 
balancing act: simultaneously selecting for patients who 
are unlikely to benefit from the control arm but are 
predicted to preferentially respond to the active treatment. 
This dual focus ensures that the trial design maximizes the 
therapeutic signal while maintaining robust and unbiased 
results.

Collectively, these seven use cases serve to provide 
an initial glimpse into how AI/ML could influence 
clinical trials, underscoring the multifaceted role of AI/
ML in enhancing the efficiency, accuracy, and overall 
effectiveness of clinical trials—from enhancing data 
quality and patient safety to streamlining complex 
processes and enriching the understanding of patient 
responses. AI/ML technologies are rapidly transitioning 
from tools of operational efficiency to engines of scientific 
insight within clinical development. Beyond conventional 
applications—such as forecasting interim analysis 
timing or benchmarking site performance—emerging 
methodologies are transforming how we understand and 
optimize trials themselves.

One such frontier involves the early identification of 
clinical trial sites exhibiting anomalous data patterns, 
specifically patterns that diverge from established 
clinical expectations or violate normative statistical 
relationships. By leveraging ML to detect deviations from 
expected symptom interdependencies and latent variable 
relationships, researchers can pinpoint sites whose data 
may undermine trial integrity. These insights allow for 

pre-randomization interventions—such as targeted audits, 
exclusion, or re-stratification—thus preserving statistical 
power and internal validity.

Further innovations in AI and ML are advancing 
precision and efficiency in clinical research by enabling 
the identification of hidden patient subgroups, the early 
detection of subtle clinical changes through continuous 
monitoring, and the generation of dynamic synthetic 
control arms using real-world and historical data. Building 
on these capabilities, privacy-preserving federated 
learning extends the reach of AI by enabling insights across 
decentralized datasets, supporting the development of 
scalable and generalizable models without compromising 
data privacy.

As AI/ML continues to evolve, its impact on clinical 
research promises to be even more profound, offering 
innovative solutions to longstanding challenges.

Challenges Associated with the Use of AI/ML 
in Clinical Trials
The use and application of AI/ML in clinical trials, while 
promising, faces several challenges that have contributed 
to its relatively slow adoption.20,40 Three key challenges 
are generalizability, provenance, and the necessity for 
effective clinical trialist-AI/ML interaction.

Generalizability pertains to how well AI models can 
perform beyond their original training, testing, and 
validation data. Ensuring an AI derived predictive model 
can generalize and provide relevant recommendations on 
previously unseen data is crucial. Achieving generalizability 
faces several challenges related to:

•	 the availability of large and diverse datasets;
•	 data preparation and processing tasks, such as anno-

tation, labelling and enrichment, biases elimination, 
and design choices;

•	 assumptions made concerning the data’s measure-
ment and representation;

•	 potential biases stemming from factors like the stand-
ard of care, represented population, data quality, and 
healthcare settings;

•	 the use of Chain-of-Thought prompting to improve 
the explainability from LLM outputs and to facilitate 
the understanding of how these systems are evolv-
ing;41

•	 the creation of sophisticated algorithms to address 
the limitations of methods in vogue now.

The provenance of ML algorithms—the decisions, implicit 
or hidden, that were made in the creation of the model—
poses a challenge in the utility and application of AI/ML 
in clinical trials. Capturing design constraints a priori is 
essential, with model performance dictated by what is 
both safe and useful. Performance criteria that satisfy 
constraints, such as accuracy and error rates, can and 
should be defined and explicitly captured in advance. 
Moreover, understanding the provenance of an AI/ML 
algorithm—its origin, training data, assumptions, and 
development process—is essential to ensure its reliability 
and contextual validity. This includes documenting 
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the source and structure of the data, the preprocessing 
steps, the rationale behind model choices, and any 
transformations or augmentations applied. For instance, a 
model trained on predominantly North American clinical 
trial data may underperform in global settings due to 
demographic or procedural mismatches. Similarly, models 
trained on historical trial data may inadvertently inherit 
outdated clinical practices or embedded biases. Clear 
documentation of provenance supports reproducibility, 
facilitates regulatory review, and enables ethical evaluation 
of model impact on patient safety and equity.

In practice, cutting edge methods designed to discover 
enrichment criteria to de-risk clinical trials explicitly 
track and expose model provenance at each stage of 
development, from data lineage through to variable 
selection and subgroup formation. This approach not 
only enhances interpretability but also allows trial 
sponsors and regulators to interrogate how specific data 
characteristics influence model outputs and subgroup 
definitions, bringing traceability and accountability into 
AI-driven trial analytics.

Supervised learning models in clinical trials, reliant 
on physician- and scientist-provided categorization 
labels for drug responses and diseases, often reinforce 
preexisting categorizations rooted in current knowledge. 
This feedback loop not only propagates errors inherent in 
the labeling process but also limits the discovery of novel 
subpopulations, especially in heterogeneous diseases like 
cancer or psychiatric disorders. Traditional ML methods 
often oversimplify complex spectra of patient responses, 
leading to missed insights into alternative mechanisms of 
action. To address this, leveraging unsupervised or semi-
supervised approaches, explainable AI, and multi-modal 
data integration can uncover hidden patient subgroups 
and refine our understanding of disease. These methods 
challenge static categories and offer dynamic insights into 
patient variability, paving the way for a more nuanced and 
equitable exploration of clinical trial populations. Further, 
there is an opportunity to utilize novel mathematical 
methods to address these challenges.

Following this theme, complex ML algorithms can be 
resource-intensive, demanding substantial data volumes 
for effective training. To mitigate this, there are research 
efforts underway exploring methods to extract valuable 
insights, even from limited datasets. This involves 
considering innovative mathematical foundations 
for algorithms and improved collaboration between 
AI systems and clinical trialists. These challenges are 
particularly pertinent when explainability of AI systems 
is limited. While transparency in AI operation is valuable 
for assisting users in making informed decisions, non-
transparent methods can still provide insights, particularly 
in complex domains like clinical trials. The limitations 
of these “black-box” approaches can be mitigated by 
incorporating human-in-the-loop systems, ensuring 
that expert feedback guides and validates AI outputs. 
Additionally, complementing these methods with 
explainable AI enhances interpretability, enabling users 
to balance the predictive power of opaque models with 
the actionable insights of more transparent techniques.

Ethical Considerations for Trustworthy AI in 
Clinical Trials
The integration of AI into clinical trials presents ethical 
considerations that must be addressed to ensure the 
trustworthiness and safety of these technologies for 
their intended purpose. The evolving field of ethical AI 
underscores the need to protect patients’ rights, privacy, 
and safety.40 Establishing a robust and trustworthy 
foundation is therefore crucial for the integration of AI in 
clinical trials.

While de-identification is a standard practice in clinical 
research, recent advances in AI have raised legitimate 
concerns about the potential for re-identifying individuals 
within ostensibly anonymized datasets. Complex AI 
models, particularly those trained on large and diverse 
data sources, can sometimes detect subtle patterns that 
correlate across datasets, unintentionally increasing the 
risk of re-identification. This possibility necessitates the 
implementation of robust, multi-layered privacy controls, 
including techniques such as differential privacy, 
federated learning, and rigorous access governance.42,43 
Addressing these risks is critical for maintaining patient 
trust and upholding ethical standards in pharmaceutical 
research. The primary objective for developing AI-based 
applications for clinical trials is to create products with 
trustworthy design, development, and testing processes. 
This is vital for societal trust in the AI-based product by 
all interested parties, including patients, clinical trialists, 
and regulators. AI/ML approaches have shown promise 
in proof-of-concept and academic studies and have 
recently found themselves being used in actual clinical 
trials.44

A risk involved is that AI systems may produce models 
that are driven by erroneous factors. For example, an AI 
system designed to diagnose cancer lesions performed 
well in a proof-of-concept study but failed in a real-world 
setting. In this instance, the AI mistakenly learned to rely 
on human-derived measurements, such as rulers placed 
next to tumors in images, as the primary indicator to 
classify cancer images.45,46 The resulting model erroneously 
used these adjacent images as cancer identifiers rather 
than assessing the lesion itself.47 This example illustrates 
that AI/ML needs to be trained according to a rigorous set 
of standards, and that for medical purposes, even though 
explainability may not be strictly required, as described 
previously in this paper, effective human-AI collaborative 
practices need to be employed.48

Despite recent advances, the EU Commission and the 
High-Level Expert Group on Artificial Intelligence (AI 
HLEG) have prudently published guidelines for Ethical and 
Trustworthy AI.49 These guidelines emphasize a human-
centric approach and outline seven core requirements 
that AI systems should meet to be considered trustworthy. 
The guideline states that throughout the AI system’s 
entire life cycle, trustworthy AI should be lawful, ethical, 
and robust (from both technical and social perspectives). 
Within the guidelines, four ethical principles are 
considered ethical imperatives within the context of 
AI: respect for human autonomy, prevention of harm, 
fairness, and explicability. Overall, the outputs by the AI 



Geraci et al: Current Opportunities for the Integration and Use of AI/ML in Clinical TrialsArt. 8, page 8 of 15

HLEG have served as resources to multiple policy-making 
initiatives in this area.49

The EU has introduced the ‘Artificial Intelligence Act’ 
as a set of regulations to ensure the ethical use of AI.50,51 
This legislation aims to promote the development of 
trustworthy AI systems with a focus on protecting the 
fundamental rights of citizens, building public trust in 
AI, and promoting its widespread adoption. The Artificial 
Intelligence Act adopts a risk-based approach, classifying 
AI systems as unacceptable, high-risk, limited-risk, or 
minimal-risk. It outlines obligations for these systems 
including using adequate risk and quality management 
systems; providing clear, concise, and transparent 
instructions for use; maintaining high-quality datasets 
for training, validation, and testing; and the allowance for 
human override capabilities.

The ethical considerations surrounding AI in clinical 
trials are crucial in ensuring safety, trustworthiness, 
and compliance with regulations. Adhering to ethical 
principles and guidelines is essential to harness the 
potential of AI while safeguarding patients and upholding 
societal values. It is also hoped that by providing legal 
certainty on the permitted use of AI, these guidelines will 
encourage innovation and investment in the sector.

Good Machine Learning Practices in Clinical 
Development
The adoption of Good ML Practices (GMLP) is essential to 
ensure the effective and ethical use of AI/ML, particularly 
in clinical development use cases. The adoption of GMLP 
is influenced by several factors, such as transparency and 
explainability with proper documentation; data quality 
and relevance; performance monitoring; and validation. 
These offer a common-sense framework applicable to 
scenarios where the ML methods are complex and it is 
difficult to directly assess the logic of their outputs, such 
as those involving large neural networks.52

Defining the intended scope of the use case is 
paramount and requires the provision of comprehensive 
and contextually relevant information regarding 
the ML model’s performance, encompassing details 
about the training and testing data, acceptable inputs, 
known limitations, how to interpret results, and model 
integration into the overall solution. Additionally, feature 
engineering—the process of selecting, manipulating, and 
transforming raw input data into features that can be 
used in ML—plays a vital role. GMLP places significant 
emphasis on the quantity and quality of training data, as 
model accuracy heavily relies on input features, feature 
importance, and diversity of training data.53 Best practices 
in GMLP should ensure independence of training and test 
datasets to mitigate bias and confounding factors. Feature 
importance assigns higher significance to some specific 
input features, which enhances model generalization 
across larger datasets (e.g., higher feature importance of 
females in breast cancer prediction models).54

When designing a model, it is crucial to consider its 
intended use and to mitigate risks of overfitting to training 
data. Utilizing human-in-the-loop methodologies provide 

useful checks and balances on machine predictions, 
improving the model’s learning capabilities through user 
feedback. Deep learning models have reduced the need for 
manual feature engineering by leveraging representation 
learning to extract relevant features directly from raw 
data. However, traditional machine learning models, 
such as decision trees or logistic regression, still depend 
heavily on well-defined input features, making feature 
engineering crucial for optimizing their performance. It 
is important to distinguish between these approaches, 
as preprocessing and light feature engineering can still 
enhance the performance of deep learning models, 
particularly when applied to structured data, where 
domain knowledge can guide the model toward better 
representations.

It is also important to note that in clinical trials, 
particularly during enrichment, it is essential for AI to 
provide a clear and actionable prescription of the features 
and their specific ranges that define a superior pre-
randomization cohort. This level of precision ensures that 
the identified patient groups are optimized for achieving 
meaningful trial outcomes. For such use cases, the use of 
simulations becomes critical, enabling robust evaluation 
of potential cohorts under varying scenarios. Equally 
important is the AI’s ability to identify subpopulations with 
sufficient effect sizes, allowing for the recommendation of 
effective cohorts even when working with the inherently 
small datasets typical of clinical trials.

Collectively, GMLP serve as a comprehensive guide to 
ensure the effective and ethical application of AI/ML in 
clinical development.52 They emphasize the importance 
of defining a clear use case, providing transparency in 
model performance, and competent feature engineering. 
The quality and independence of training and testing 
datasets are paramount to the model’s accuracy and 
generalizability. Furthermore, the integration of human-
in-the-loop methodologies not only provides a safety net 
for machine predictions but also enhances the model’s 
learning capabilities through a feedback mechanism. 
GMLP also underscore the necessity of balancing model 
complexity with interpretability, ensuring transparency 
in predictions while harnessing the full potential of 
AI/ML. Adhering to these practices is essential for 
mitigating risks, ensuring fairness, and maintaining trust 
in advanced AI technologies.52 Table 2 summarizes key 
GMLP considerations for the implementation of AI/ML in 
clinical trials.

Regulatory Considerations for the Use of AI/
ML in Clinical Trials
Regulators recognize the potential of AI/ML technologies 
in advancing drug development and streamlining clinical 
trials and have taken proactive steps, formulating 
strategies, action plans, and informational documents 
that provide guidance on the use of AI/ML-based software 
in medical devices and drug development.55 Recognizing 
the need for responsible use, regulatory agencies actively 
engage in outreach to develop principles and guidance 
addressing the unique challenges and risks associated 
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with the responsible use of AI/ML in clinical trials.8,56 
An example of such outreach efforts is the EMA’s GCP 
Inspector Work Group stakeholder meetings held in 
202020 and 202140,57.

Moreover, regulatory agencies strongly encourage 
sponsors and other interested parties to initiate early and 
frequent communication, particularly when employing 
AI/ML in clinical development, such as for study 
population enrichment, assessment of endpoints, and 
to inform study design. The 2021 stakeholder meeting 
discussed avenues for regulatory engagement, soliciting 
input and advice, as well as criteria used to evaluate AI/
ML technology. Currently, there are several established 
forums for engagement with regulatory agencies,8,58–61 as 
well as published guidance documents, action plans, and 
other informational documents regarding the integration 
of new technologies, including AI/ML in clinical trials. 
However, summarizing the details provided in these 
documents is beyond the scope of this paper.52,53,62–76

Existing regulatory frameworks lack specific 
requirements or guidance documents pertaining to 
the evaluation of AI/ML algorithms in critical GCP 
applications. However, the Danish Medicines Agency 
(DKMA) published a proposal in March 2021 that includes 
pointed questions aimed at comprehensively assessing 
AI/ML model risks and accuracy.77 These questions probe 
the design, training, validation, and testing processes, 
with a focus on identifying potential issues in machine 
training data, including biases, validation challenges, and 

algorithm accuracy. The DKMA proposal scrutinizes model 
selection and optimization and evaluates the relevance, 
sufficiency, and integrity of test data and associated 
outcomes.77 It is important to note that the DKMA 
proposal, while informative, may not necessarily reflect 
the official position of the EMA or the GCP IWG.

In general, regulators recommend a transparent, risk-
proportionate approach to the management of AI/
ML technologies throughout the entire clinical trial 
lifecycle.55 This approach encompasses comprehensive 
documentation of the algorithm and its intended use, 
adherence to GMLP during model creation and validation, 
and the careful evaluation of training, testing, and 
validation datasets. In addition, it is imperative to maintain 
and retain necessary documentation throughout the AI/
ML technologies’ lifecycle.

Future Directions of the Use of AI/ML in 
Clinical Trials
With respect to clinical trials for new drug development, 
the integration of AI/ML applications with privacy-
preserving features is emerging as a promising avenue. 
One notable approach is federated or collaborative 
learning, which enables the training of data models locally 
without the need for actual data sharing.78 This approach 
proves advantageous by allowing multiple organizations 
to collaboratively train AI/ML models on their respective 
datasets while safeguarding sensitive patient information 
and proprietary data. Instead of sharing raw data, 

Table 2: GMLP considerations for AI/ML implementation in clinical trials.

GMLP Considerations Description

Document Process Thoroughly document training, validation, and testing phases, including deviations from the plan.

Ensure Data Integrity Use large, diverse datasets with proper identification and storage for training, validation, and testing.

Avoid Data Overlap Verify test data independence, ensuring it doesn’t overlap with training or validation data.

Rigorous Test Data 
Selection

Separate test data carefully and select it based on relevant criteria for representativeness and 
challenge.

Robust Data 
Processing

Apply appropriate cleaning, normalization, and exclusion criteria to maintain data quality in 
test data.

Feature Analysis Understand the impact of features on the algorithm’s output and select relevant test data 
accordingly.

Account for Technical 
Differences

Ensure test data covers potential real-world variations in formatting and data sources.

Verify Classifications Validate correctness of data classifications, possibly involving second-person verification or lab tests.

Keep Data Up-to-date Regularly assess test data relevance and plan for retraining to address data changes.

Address Bias and 
Variance

Optimize the algorithm to balance bias and variance tradeoff and assess results using graphs.

Use Appropriate 
Metrics

Utilize metrics like Sensitivity, Specificity, Precision, and F1 Score for evaluating model performance.

Focus on Key Metrics Emphasize relevant metrics and confusion matrix quadrants based on the application’s scope.

Define Application 
Scope

Limit the scope based on test data and results, ensuring the algorithm’s applicability.

Set Appropriate 
Thresholds

Establish clear thresholds for end results and determine when human interaction is required for 
certain outcomes.
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federated learning aggregates learned model updates, 
enhancing the overall performance and generalization of 
AI/ML models. This approach not only addresses privacy 
concerns but also allows researchers to leverage larger and 
more diverse datasets, ultimately leading to more robust 
and precise AI-driven insights in drug development. Such 
collaborative endeavours hold the potential to expedite 
the discovery of novel therapies, optimize clinical trial 
designs, and improve patient outcomes.

Furthermore, the advancement of LLMs offers 
additional avenues for enhancing and streamlining 
clinical trials.79 For example, LLMs, and their fusions 
with sophisticated ML and heuristics, can analyze EHRs 
to identify potential trial participants who meet specific 
study eligibility criteria to facilitate the use of RWD and 
patient recruitment in clinical trials.80,81 These models 
may streamline the collection of RWD in clinical trials by 
automatically extracting relevant data—such as standard 
of care and medical history from the EHRs—and inputting 
it directly into EDC systems.82 They may also support the 
design of future trials by identifying patterns such as drug 
response profiles, placebo sensitivity, adverse event risk 
factors, and potential drug interactions, based on insights 
learned from previously completed studies. These insights 
can inform the development of more effective enrichment 
strategies, including refined inclusion and exclusion 
criteria, all intended for use in the pre-randomization 
phase to enhance trial efficiency and increase the 
likelihood of detecting true therapeutic effects.81,83 
Additionally, LLMs may assist in developing personalized 
messaging strategies to keep patients engaged in the 
trial and motivated to complete them successfully. 
Finally, by having LLMs interpret results from emerging 
sophisticated explanatory ML algorithms that learn from 
clinical trial data, one may benefit from having insights 
interpreted through a large corpus of medical literature. 
These hybrid systems can inform future trial design, 
such as through identifying patient subpopulations with 
differential drug responses or by identifying confounding 
factors that may need to be controlled for in future trials. 
These advancements not only promise increased efficiency 
in clinical trial processes but also hold the potential to 
improve the drug development landscape by accelerating 
discoveries and improving patient outcomes.

Another promising direction involves constructing a 
federation of algorithms capable of supervised learning, 
augmented by human expertise and unsupervised 
methods. This approach enables clinical trialists to 
optimize their trials through personalization and adverse 
event modelling, identifying patient subpopulations 
best served by specific treatments. Further, emerging 
developments suggest that Agentic AI coupled with 
sophisticated mathematical augmentation, holds the 
promise of reshaping clinical trials by dynamically 
adapting to trial complexities, identifying actionable 
subpopulations in real-time, and offering predictive 
insights that accelerate drug development while ensuring 
patient safety and efficacy.

The accelerating impact of AI/ML in clinical research 
and medicine is driven by several converging mechanisms. 
First, the growing availability of high-dimensional 

real-world and clinical trial data, spanning genomics, 
imaging, behavioral metrics, and EHRs, enables richer 
and more representative model development. Second, 
advances in model architectures, particularly those 
tailored for small, heterogeneous datasets, now allow for 
interpretable subpopulation discovery and hypothesis 
generation in early-phase and rare disease trials.39,84 
These efforts are leading to frameworks that retain 
full traceability from source data to insight, ensuring 
clinical relevance while maintaining auditability. Finally, 
government organizations are advancing frameworks for 
assessing AI/ML model risk, robustness, and bias, laying 
the groundwork for safe and scalable deployment.50,85 
These developments, taken together, make a compelling 
case that AI/ML will not merely support, but will actively 
shape, the future of clinical trial design and therapeutic 
decision-making.

Conclusion
As AI/ML continues to reshape clinical trials, industry 
and regulatory authorities are rapidly adapting to 
these changes. Stakeholder meetings play a crucial role 
in fostering communication, discussing challenges, 
and seeking scientific advice. The potential of AI/ML 
offers both opportunities and challenges, pushing the 
boundaries of innovation to explore novel solutions. 
Success hinges on building trust through open 
communication, transparency, and realistic expectations 
with regulators and other interested parties, including 
patient advocacy groups.

For regulators and clinical trial leadership to fully 
embrace AI/ML advancements, transparency, along with 
the safe and effective development and implementation 
of these technologies, is key. This includes safeguarding 
participants’ rights and safety, ensuring data quality 
and integrity, and driving efficiency improvements that 
go beyond merely digitizing existing processes. AI/
ML opens doors to new approaches, such as federated 
learning, enabling insights from external data without 
centralization. The unique requirements of clinical trials 
are pushing AI/ML to innovate further so that systems can 
learn from smaller data and that explainability becomes 
a priority.

Disclaimer
This article reflects the views of the authors and may not 
be understood or quoted as being made on behalf or 
reflecting the position of the agencies or organizations 
with which the authors are affiliated.

Acknowledgements
The authors thank the EMA Good Clinical Practice 
Inspectors Working Group for their efforts in hosting the 
two virtual conferences in 2020 and 2021. Thanks also 
go to the Society for Clinical Data Management (SCDM) 
for their logistical support in the initial summary of the 
first conference discussions. The following individuals are 
acknowledged for their contribution in the organization, 
presentation and/or discussion in the virtual conference 
session(s): Camelia Mihaescu (EMA), Jane Moseley (EMA), 
Ashley Howard (Pfizer), Willie Muehlhausen (Safria Clinical 



Geraci et al: Current Opportunities for the Integration and Use of AI/ML in Clinical Trials Art. 8, page 11 of 15

Research), Melissa Binz (Pfizer), Emma Richard (Johnson & 
Johnson), Ruthie Davi (Acorn AI), Julián Isla (Foundation 
29), Kevin Lyman (Enlytic), Bruno Boulanger (PharmaLex), 
Matthew Diamond (US FDA), Ivan Walrath (Pfizer), Robert 
Vandersluis (GSK), Fiona Maini (Medidata Solutions), 
Xiaoxuan Liu (University Hospitals Birmingham), Mihaela 
Van Der Schaar (University of Cambridge), Kim Branson 
(GSK), Ilan Halberstam (Idorsia), Jesper Kjaer (DKMA), Ib 
Alstrup (DKMA), Steven Berman (US FDA), Dennis Bergau 
(Abbvie), Yiannos Tolias (European Commission) and 
Jelena Malinina (European Consumer Organization).

Competing Interests
Drs. Geraci and Qorri are employees of NetraMark Corp. 
Dr. Geraci is a significant shareholder of NetraMark Corp. 
which develops commercial clinical trial optimization 
and precision medicine products. Dr. Geraci is also 
affiliated with the Department of Molecular Medicine and 
Pathology, Queen’s University, Kingston, Ontario, Canada; 
Center for Biotechnology and Genomic Medicine, Augusta 
University, Georgia, USA; and the Centre for Addiction and 
Mental Health, Toronto, Canada; Arthur C. Clarke Center 
for Human Imagination, School of Physical Sciences, 
University of California, San Diego, CA, USA. Mr. Rao is 
an employee of Saama Technologies, and he participated 
in the EMA-GCP IWG AI in clinical trials workshops 
when he was employed by Pfizer. Mr. Nadolny is a full-
time employee of Sanofi and a member representative 
of the Society for Clinical Data Management (SCDM). 
Dr. Edwards is an employee of Relation. Ms. Hofmann 
is an employee of Cognizant Technology Solutions. Dr. 
Khozin participated the EMA-GCP IWG AI in clinical trials 
workshops when he was employed by Johnson & Johnson, 
Inc. and ASCO’s CancerLinQ LLC., in 2020 and 2021, 
respectively. Currently, he is a Research Affiliate at the 
MIT, and Principal, PhyusionBio, LLC. Mr. Schaltenbrand 
is an employee of Wega Informatik AG. Mr. Yeomans 
is an employee of Viedoc Technologies. Mr. Zambas is 
an employee of Pfizer, Inc. NYC, USA and is a member 
representative of SCDM. Dr. Khin participated in the EMA 
GCP-IWG working group AI in clinical trials workshop 
planning activities when she was previously employed by 
the US Food and Drug Administration. Currently, she is 
employed by Neurocrine Biosciences, Inc.

References
 1. Bohr A, Memarzadeh K. The rise of artificial 

intelligence in healthcare applications. Artificial 
Intelligence in Healthcare. Published online January 
1, 2020:25–60. DOI: https://doi.org/10.1016/
B978-0-12-818438-7.00002-2

 2. Bajwa J, Munir U, Nori A, Williams B. Artificial 
intelligence in healthcare: transforming the practice 
of medicine. Future Healthc J. 2021;8(2):e188–e194. 
DOI: https://doi.org/10.7861/fhj.2021-0095

 3. Johnson KB, Wei WQ, Weeraratne D, et al. 
Precision medicine, AI, and the future of personalized 
health care. Clin Transl Sci. 2021;14(1):86–93. DOI: 
https://doi.org/10.1111/cts.12884

 4. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia 
K, Tekade RK. Artificial intelligence in drug 

discovery and development. Drug Discov Today. 
2021;26(1):80–93. DOI: https://doi.org/10.1016/j.
drudis.2020.10.010

 5. Askin S, Burkhalter D, Calado G, El Dakrouni 
S. Artificial intelligence applied to clinical trials: 
opportunities and challenges. Health Technol (Berl). 
2023;13(2):203–213. DOI: https://doi.org/10.1007/
s12553-023-00738-2

 6. European Medicines Agency. Annual Report 
of the Good Clinical Practice Inspectors Working 
Group 2020. Published online 2020. Accessed 
September 24, 2023. https://www.ema.europa.
eu/en/documents/report/annual-report-good-
clinical-practice-inspectors-working-group-2020_
en.pdf

 7. European Medicines Agency. Annual Report 
of the Good Clinical Practice Inspectors Working 
Group 2021. Published online 2021. Accessed 
January 7, 2025. https://www.ema.europa.eu/en/
documents/report/annual-report-good-clinical-
practice-inspectors-working-group-2021_en.pdf

 8. Liu Q, Huang R, Hsieh J, et al. Landscape analysis 
of the application of artificial intelligence and 
machine learning in regulatory submissions for drug 
development from 2016 to 2021. Clin Pharmacol 
Ther. 2023;113(4):771–774. DOI: https://doi.
org/10.1002/cpt.2668

 9. Vaswani A, Shazeer NM, Parmar N, et al. Attention 
is all you need. Neural Information Processing 
Systems. Published online 2017. DOI: https://doi.
org/10.48550/arXiv.1706.03762

 10. Quantiphi. From Data to Drugs: The Promising 
Intersection of Generative AI and Pharma Industry. 
Published July 7, 2023. Accessed May 21, 2025. 
https://quantiphi.com/from-data-to-drugs-the-
promising-intersection-of-generative-ai-and-
pharma-industry/

 11. Sarker IH. Machine learning: algorithms, real-world 
applications and research directions. SN Comput 
Sci. 2021;2(3):160. DOI: https://doi.org/10.1007/
s42979-021-00592-x

 12. Liu F, Demosthenes P. Real-world data: a brief 
review of the methods, applications, challenges 
and opportunities. BMC Med Res Methodol. 
2022;22(1):287. DOI: https://doi.org/10.1186/
s12874-022-01768-6

 13. Weissler EH, Naumann T, Andersson T, et al. 
The role of machine learning in clinical research: 
transforming the future of evidence generation. 
Trials. 2021;22(1):537. DOI: https://doi.
org/10.1186/s13063-021-05489-x

 14. Madan S, Lentzen M, Brandt J, Rueckert D, 
Hofmann-Apitius M, Fröhlich H. Transformer 
models in biomedicine. BMC Medical Informatics 
and Decision Making. 2024;24(1):1–22. DOI: 
https://doi.org/10.1186/s12911-024-02600-5

 15. Denecke K, May R, Rivera-Romero O. Transformer 
models in healthcare: a survey and thematic 
analysis of potentials, shortcomings and risks. 
J Med Syst. 2024;48(1):23 DOI: https://doi.
org/10.1007/s10916-024-02043-5

https://doi.org/10.1016/B978-0-12-818438-7.00002-2
https://doi.org/10.1016/B978-0-12-818438-7.00002-2
https://doi.org/10.7861/fhj.2021-0095
https://doi.org/10.1111/cts.12884
https://doi.org/10.1016/j.drudis.2020.10.010
https://doi.org/10.1016/j.drudis.2020.10.010
https://doi.org/10.1007/s12553-023-00738-2
https://doi.org/10.1007/s12553-023-00738-2
https://www.ema.europa.eu/en/documents/report/annual-report-good-clinical-practice-inspectors-working-group-2020_en.pdf
https://www.ema.europa.eu/en/documents/report/annual-report-good-clinical-practice-inspectors-working-group-2020_en.pdf
https://www.ema.europa.eu/en/documents/report/annual-report-good-clinical-practice-inspectors-working-group-2020_en.pdf
https://www.ema.europa.eu/en/documents/report/annual-report-good-clinical-practice-inspectors-working-group-2020_en.pdf
https://www.ema.europa.eu/en/documents/report/annual-report-good-clinical-practice-inspectors-working-group-2020_en.pdf
https://www.ema.europa.eu/en/documents/report/annual-report-good-clinical-practice-inspectors-working-group-2020_en.pdf
https://www.ema.europa.eu/en/documents/report/annual-report-good-clinical-practice-inspectors-working-group-2020_en.pdf
https://doi.org/10.1002/cpt.2668
https://doi.org/10.1002/cpt.2668
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://quantiphi.com/from-data-to-drugs-the-promising-intersection-of-generative-ai-and-pharma-industry/
https://quantiphi.com/from-data-to-drugs-the-promising-intersection-of-generative-ai-and-pharma-industry/
https://quantiphi.com/from-data-to-drugs-the-promising-intersection-of-generative-ai-and-pharma-industry/
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1186/s12874-022-01768-6
https://doi.org/10.1186/s12874-022-01768-6
https://doi.org/10.1186/s13063-021-05489-x
https://doi.org/10.1186/s13063-021-05489-x
https://doi.org/10.1186/s12911-024-02600-5
https://doi.org/10.1007/s10916-024-02043-5
https://doi.org/10.1007/s10916-024-02043-5


Geraci et al: Current Opportunities for the Integration and Use of AI/ML in Clinical TrialsArt. 8, page 12 of 15

 16. Kumar Y, Koul A, Singla R, Ijaz MF. Artificial 
intelligence in disease diagnosis: a systematic 
literature review, synthesizing framework and 
future research agenda. J Ambient Intell Humaniz 
Comput. 2023;14(7):8459–8486. DOI: https://doi.
org/10.1007/s12652-021-03612-z

 17. Khozin S. From organs to algorithms: Redefining 
cancer classification in the age of artificial 
intelligence. Clin Transl Sci. 2024;17(9):e70001. 
DOI: https://doi.org/10.1111/cts.70001

 18. Raju GK, Khozin S, Gurumurthi K, Domike 
R, Woodcock J. Patient-centered approach to 
benefit–risk characterization using number needed 
to benefit and number needed to harm: advanced 
non–small-cell lung cancer. JCO Clin Cancer Inform. 
2020;(4):769–783. DOI: https://doi.org/10.1200/
CCI.19.00103

 19. U.S. Food and Drug Administration. FDA 
approves first cancer treatment for any solid tumor 
with a specific genetic feature. Published May 23, 
2017. Accessed September 24, 2023. https://www.
fda.gov/news-events/press-announcements/fda-
approves-first-cancer-treatment-any-solid-tumor-
specific-genetic-feature

 20. European Medicines Agency. Artificial intelligence 
in clinical trials – ensuring it is fit for purpose. 
YouTube. Accessed August 13, 2024. https://www.
youtube.com/watch?v=T92f8O9QIGU

 21. Pfizer. How a Novel ‘Incubation Sandbox’ Helped 
Speed Up Data Analysis in Pfizer’s COVID-19 Vaccine 
Trial. Accessed September 25, 2023. https://
www.pfizer.com/news/articles/how_a_novel_
incubation_sandbox_helped_speed_up_data_
analysis_in_pfizer_s_covid_19_vaccine_trial

 22. Izmailova ES, Wagner JA, Perakslis ED. Wearable 
devices in clinical trials: hype and hypothesis. Clin 
Pharmacol Ther. 2018;104(1):42–52. DOI: https://
doi.org/10.1002/cpt.966

 23. Mitsi G, Grinnell T, Giordano S, et al. Implementing 
digital technologies in clinical trials: lessons 
learned. Innov Clin Neurosci. 2022;19(4–6):65–69.

 24. Coravos A, Khozin S, Mandl KD. Developing and 
adopting safe and effective digital biomarkers to 
improve patient outcomes. NPJ Digital Medicine 
2019 2:1. 2019;2(1):1–5. DOI: https://doi.
org/10.1038/s41746-019-0090-4

 25. Brophy E, Muehlhausen W, Smeaton AF, Ward 
TE. Optimised convolutional neural networks for 
heart rate estimation and human activity recognition 
in wrist worn sensing applications. Published online 
March 30, 2020. Accessed September 27, 2023. 
https://arxiv.org/abs/2004.00505v1

 26. Richard E, Reddy B. Text classification for clinical 
trial operations: evaluation and comparison of 
natural language processing techniques. Ther Innov 
Regul Sci. 2021;55(2):447–453. DOI: https://doi.
org/10.1007/s43441-020-00236-x

 27. Akobeng AK. Understanding randomised controlled 
trials. Arch Dis Child. 2005;90(8):840–844. DOI: 
https://doi.org/10.1136/adc.2004.058222

 28. Thorlund K, Dron L, Park JJH, Mills EJ. Synthetic 
and external controls in clinical trials – a primer for 
researchers. Clin Epidemiol. 2020;12:457–467. DOI: 
https://doi.org/10.2147/CLEP.S242097

 29. Austin PC. An introduction to propensity score 
methods for reducing the effects of confounding 
in observational studies. Multivariate Behav Res. 
2011;46(3):399–424. DOI: https://doi.org/10.1080
/00273171.2011.568786

 30. Corder N, Yang S. Utilizing stratified generalized 
propensity score matching to approximate blocked 
randomized designs with multiple treatment 
levels. J Biopharm Stat. 2022;32(3):373–399. DOI: 
https://doi.org/10.1080/10543406.2022.20655
07

 31. Yin X, Mishra-Kalyan PS, Sridhara R, Stewart 
MD, Stuart EA, Davi RC. Exploring the potential 
of external control arms created from patient level 
data: A case study in non-small cell lung cancer. J 
Biopharm Stat. 2022;32(1):204–218. DOI: https://
doi.org/10.1080/10543406.2021.2011901

 32. Society for Clinical Data Management. 
Introduction to Artificial Intelligence in Drug 
Development (Part 1 and 2). Accessed December 16, 
2023. https://learning-scdm.org/courses/28689

 33. Huang J, An A, Hu V, Tu K. Medical text analytics 
tools for search and classification. Stud Health 
Technol Inform. 2009;143:519–524. DOI: https://
doi.org/10.3233/978-1-58603-979-0-519

 34. Zhao M, Havrilla JM, Fang L, et al. Phen2Gene: 
rapid phenotype-driven gene prioritization for rare 
diseases. NAR Genom Bioinform. 2020;2(2). DOI: 
https://doi.org/10.1093/nargab/lqaa032

 35. Foundation 29. Accessed December 16, 2023. 
https://foundation29.org/#home

 36. Dx29. Accessed December 16, 2023. https://dx29.
ai/

 37. Hall KT, Loscalzo J. Drug-placebo additivity 
in randomized clinical trials. Clin Pharmacol 
Ther. 2019;106(6):1191–1197. DOI: https://doi.
org/10.1002/cpt.1626

 38. Smith EA, Horan WP, Demolle D, et al. Using 
artificial intelligence-based methods to address 
the placebo response in clinical trials. Innov Clin 
Neurosci. 2022;19(1–3):60–70.

 39. Geraci J, Bhargava R, Qorri B, et al. Machine 
learning hypothesis-generation for patient 
stratification and target discovery in rare disease: 
our experience with Open Science in ALS. Front 
Comput Neurosci. 2023;17:1199736. DOI: https://
doi.org/10.3389/fncom.2023.1199736

 40. GCP IWG. 2021 Virtual Workshop of the GCP IWG 
on Artificial Intelligence in Clinical Trials day1 on 
Vimeo. Accessed August 13, 2024. https://vimeo.
com/video/626397529

 41. Wei J, Wang X, Schuurmans D, et al. Chain-
of-thought prompting elicits eeasoning in 
large language models. Adv Neural Inf Process 
Syst. 2022;35. DOI: https://doi.org/10.48550/
arXiv.2201.11903

https://doi.org/10.1007/s12652-021-03612-z
https://doi.org/10.1007/s12652-021-03612-z
https://doi.org/10.1111/cts.70001
https://doi.org/10.1200/CCI.19.00103
https://doi.org/10.1200/CCI.19.00103
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature
https://www.fda.gov/news-events/press-announcements/fda-approves-first-cancer-treatment-any-solid-tumor-specific-genetic-feature
https://www.youtube.com/watch?v=T92f8O9QIGU
https://www.youtube.com/watch?v=T92f8O9QIGU
https://www.pfizer.com/news/articles/how_a_novel_incubation_sandbox_helped_speed_up_data_analysis_in_pfizer_s_covid_19_vaccine_trial
https://www.pfizer.com/news/articles/how_a_novel_incubation_sandbox_helped_speed_up_data_analysis_in_pfizer_s_covid_19_vaccine_trial
https://www.pfizer.com/news/articles/how_a_novel_incubation_sandbox_helped_speed_up_data_analysis_in_pfizer_s_covid_19_vaccine_trial
https://www.pfizer.com/news/articles/how_a_novel_incubation_sandbox_helped_speed_up_data_analysis_in_pfizer_s_covid_19_vaccine_trial
https://doi.org/10.1002/cpt.966
https://doi.org/10.1002/cpt.966
https://doi.org/10.1038/s41746-019-0090-4
https://doi.org/10.1038/s41746-019-0090-4
https://arxiv.org/abs/2004.00505v1
https://doi.org/10.1007/s43441-020-00236-x
https://doi.org/10.1007/s43441-020-00236-x
https://doi.org/10.1136/adc.2004.058222
https://doi.org/10.2147/CLEP.S242097
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1080/00273171.2011.568786
https://doi.org/10.1080/10543406.2022.2065507
https://doi.org/10.1080/10543406.2022.2065507
https://doi.org/10.1080/10543406.2021.2011901
https://doi.org/10.1080/10543406.2021.2011901
https://learning-scdm.org/courses/28689
https://doi.org/10.3233/978-1-58603-979-0-519
https://doi.org/10.3233/978-1-58603-979-0-519
https://doi.org/10.1093/nargab/lqaa032
https://foundation29.org/#home
https://dx29.ai/
https://dx29.ai/
https://doi.org/10.1002/cpt.1626
https://doi.org/10.1002/cpt.1626
https://doi.org/10.3389/fncom.2023.1199736
https://doi.org/10.3389/fncom.2023.1199736
https://vimeo.com/video/626397529
https://vimeo.com/video/626397529
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903


Geraci et al: Current Opportunities for the Integration and Use of AI/ML in Clinical Trials Art. 8, page 13 of 15

 42. Dwork C, Roth A. The algorithmic foundations of 
differential privacy. Foundations and Trends® in 
Theoretical Computer Science. 2014;9(3–4):211–407. 
DOI: https://doi.org/10.1561/0400000042

 43. Brendan McMahan H, Moore E, Ramage D, 
Hampson S, Agüera y Arcas B. Communication-
efficient learning of deep networks from 
decentralized data. Proceedings of the 20th 
International Conference on Artificial Intelligence and 
Statistics, AISTATS 2017. Published online February 
17, 2016. Accessed April 22, 2025. https://arxiv.org/
abs/1602.05629v4

 44. Chopra H, Annu, Shin DK, et al. 
Revolutionizing clinical trials: the role of AI in 
accelerating medical breakthroughs. Int J Surg. 
2023;109(12):4211–4220. DOI: https://doi.
org/10.1097/JS9.0000000000000705

 45. Liopyris K, Gregoriou S, Dias J, Stratigos AJ. 
Artificial intelligence in dermatology: challenges 
and perspectives. Dermatol Ther (Heidelb). 
2022;12(12):2637–2651. DOI: https://doi.
org/10.1007/s13555-022-00833-8

 46. Winkler JK, Fink C, Toberer F, et al. Association 
between surgical skin markings in dermoscopic 
images and diagnostic performance of a deep 
learning convolutional neural network for melanoma 
recognition. JAMA Dermatol. 2019;155(10):1135–
1141. DOI: https://doi.org/10.1001/jamadermatol 
.2019.1735

 47. Patel RH, Foltz EA, Witkowski A, Ludzik J. 
Analysis of artificial intelligence-based approaches 
applied to non-invasive imaging for early detection 
of melanoma: a systematic review. Cancers (Basel). 
2023;15(19):4694. DOI: https://doi.org/10.3390/
cancers15194694

 48. Daneshjou R, Barata C, Betz-Stablein B, et al. 
CheckList for Evaluation of image-based AI Reports 
in dermatology: CLEAR Derm Consensus Guidelines 
from the International Skin Imaging Collaboration 
Artificial Intelligence Working Group. JAMA 
Dermatol. 2022;158(1):90–96. DOI: https://doi.
org/10.1001/jamadermatol.2021.4915

 49. European AI Alliance Input for the First 
Workshop of the AI HLEG. Accessed October 8, 
2023. https://futurium.ec.europa.eu/en/european-
ai-alliance/document/european-ai-alliance-input-
first-workshop-ai-hleg?language=sk.

 50. The European Union. Artificial Intelligence Act: 
deal on comprehensive rules for trustworthy AI. 
Published December 9, 2023. Accessed January 
2, 2024. https://www.europarl.europa.eu/news/
en/press-room/20231206IPR15699/artificial-
intelligence-act-deal-on-comprehensive-rules-for-
trustworthy-ai

 51. The European Union. The Artificial Intelligence 
Act. Accessed May 27, 2025. https://
artificialintelligenceact.eu/

 52. U.S. Food and Drug Administration. Good 
Machine Learning Practice for Medical Device 
Development: Guiding Principles. Accessed January 

3, 2024. https://www.fda.gov/medical-devices/
software-medical-device-samd/good-machine-
learning-practice-medical-device-development-
guiding-principles

 53. U.S. Food and Drug Administration. Guidance 
for Industry. Software as a Medical Device (SaMD) 
Action Plan. Published online January 2021. 
Accessed January 2, 2024. https://www.fda.gov/
media/145022/download?attachment

 54. Zuo D, Yang L, Jin Y, Qi H, Liu Y, Ren L. Machine 
learning-based models for the prediction of breast 
cancer recurrence risk. BMC Med Inform Decis Mak. 
2023;23(1):1–14. DOI: https://doi.org/10.1186/
s12911-023-02377-z

 55. U.S. Food and Drug Administration. Using 
Artificial Intelligence & Machine Learning in the 
Development of Drug and Biological Products. 
Accessed December 16, 2023. https://www.fda.gov/
media/167973/download

 56. El Zarrad M, Lee A, Purcell R, Steele S. Advancing 
an agile regulatory ecosystem to respond to the 
rapid development of innovative technologies. 
Clinical Translational Science. 2022;(15):1332–
1339. DOI: https://doi.org/10.1111/cts.13267

 57. GCP IWG. 2021 Virtual Workshop of the GCP IWG 
on Artificial Intelligence in Clinical Trials day2 on 
Vimeo. Accessed August 13, 2024. https://vimeo.
com/video/629993605

 58. U.S. Food and Drug Administration. Critical 
Path Innovation Meetings (CPIM). 2015. Accessed 
January 3, 2024. https://www.fda.gov/drugs/
new-drugs-fda-cders-new-molecular-entities-
and-new-therapeutic -biological -products/
critical-path-innovation-meetings-cpim

 59. U.S. Food and Drug Administration. Critical Path 
Innovation Meetings Guidance for Industry. Published 
online 2015. Accessed January 3, 2024. https://
www.fda.gov/regulatory-information/search-fda-
guidance-documents/formal-meetings-between-fda-
and-sponsors-or-applicants-pdufa-products

 60. U.S. Food and Drug Administration. Formal 
Meetings Between the FDA and Sponsors or 
Applicants of PDUFA Products. Published September 
2023. Accessed January 3, 2024. https://www.fda.
gov/regulatory-information/search-fda-guidance-
documents/formal-meetings-between-fda-and-
sponsors-or-applicants-pdufa-products

 61. European Medicines Agency. Reflection paper on 
the use of Artificial Intelligence (AI). Published online 
2023. Accessed January 3, 2024. https://www.ema.
europa.eu/en/documents/scientific-guideline/
reflection-paper-use-artificial-intelligence-ai-
medicinal-product-lifecycle_en.pdf

 62. U.S. Food and Drug Administration. Biomarker 
Qualification Program. Accessed January 3, 2024. 
https://www.fda.gov/drugs/drug-development-
tool-ddt-qualif ication-programs/biomarker 
-qualification-program

 63. U.S. Food and Drug Administration. Qualification 
Process for Drug Development Tools Guidance 

https://doi.org/10.1561/0400000042
https://arxiv.org/abs/1602.05629v4
https://arxiv.org/abs/1602.05629v4
https://doi.org/10.1097/JS9.0000000000000705
https://doi.org/10.1097/JS9.0000000000000705
https://doi.org/10.1007/s13555-022-00833-8
https://doi.org/10.1007/s13555-022-00833-8
https://doi.org/10.1001/jamadermatol.2019.1735
https://doi.org/10.1001/jamadermatol.2019.1735
https://doi.org/10.3390/cancers15194694
https://doi.org/10.3390/cancers15194694
https://doi.org/10.1001/jamadermatol.2021.4915
https://doi.org/10.1001/jamadermatol.2021.4915
https://futurium.ec.europa.eu/en/european-ai-alliance/document/european-ai-alliance-input-first-workshop-ai-hleg?language=sk
https://futurium.ec.europa.eu/en/european-ai-alliance/document/european-ai-alliance-input-first-workshop-ai-hleg?language=sk
https://futurium.ec.europa.eu/en/european-ai-alliance/document/european-ai-alliance-input-first-workshop-ai-hleg?language=sk
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai
https://artificialintelligenceact.eu/
https://artificialintelligenceact.eu/
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles
https://www.fda.gov/media/145022/download?attachment
https://www.fda.gov/media/145022/download?attachment
https://doi.org/10.1186/s12911-023-02377-z
https://doi.org/10.1186/s12911-023-02377-z
https://www.fda.gov/media/167973/download
https://www.fda.gov/media/167973/download
https://doi.org/10.1111/cts.13267
https://vimeo.com/video/629993605
https://vimeo.com/video/629993605
https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/critical-path-innovation-meetings-cpim
https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/critical-path-innovation-meetings-cpim
https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/critical-path-innovation-meetings-cpim
https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/critical-path-innovation-meetings-cpim
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/formal-meetings-between-fda-and-sponsors-or-applicants-pdufa-products
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-use-artificial-intelligence-ai-medicinal-product-lifecycle_en.pdf
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/biomarker-qualification-program
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/biomarker-qualification-program
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/biomarker-qualification-program


Geraci et al: Current Opportunities for the Integration and Use of AI/ML in Clinical TrialsArt. 8, page 14 of 15

for Industry and FDA Staff. Published November 
2020. Accessed January 3, 2024. https://www.
fda.gov/regulatory-information/search-fda-
guidance-documents/qualification-process-drug-
development-tools-guidance-industry-and-fda-staff

 64. U.S. Food and Drug Administration. Drug 
Development Tool Qualification Process: 
Transparency Provisions. Accessed January 
3, 2024. https://www.fda.gov/drugs/drug-
development-tool-ddt-qualification-programs/
drug-development-tool-qualification-process-
transparency-provisions

 65. U.S. Food and Drug Administration. Innovative 
Science and Technology Approaches for New 
Drugs (ISTAND) Pilot Program. Accessed January 
3, 2024. https://www.fda.gov/drugs/drug-
development-tool-ddt-qualification-programs/
innovative-science-and-technology-approaches-
new-drugs-istand-pilot-program

 66. U.S. Food and Drug Administration. Innovative 
Science and Technology Approaches for New 
Drugs (ISTAND) Pilot Program Submission Process. 
Accessed January 3, 2024. https://www.fda.
gov/drugs/innovative-science-and-technology-
approaches-new-drugs-istand-pilot-program/
innovative-science-and-technology-approaches-
new-drugs-istand-pilot-program-submission-
process

 67. U.S. Food and Drug Administration. ISTAND 
Qualification Letter of Intent (LOI) Model Content 
Elements. Accessed January 3, 2024. https://www.
fda.gov/media/142478/download

 68. U.S. Food and Drug Administration. Digital 
Health Technologies for Remote Data Acquisition 
in Clinical Investigations. Published December 
2023. Accessed January 3, 2024. https://www.fda.
gov/regulatory-information/search-fda-guidance-
documents/digital-health-technologies-remote-
data-acquisition-clinical-investigations

 69. U.S. Food and Drug Administration. Proposed 
Regulatory Framework for Modifications to Artificial 
Intelligence/Machine Learning (AI/ML)-Based 
Software as a Medical Device (SaMD)-Discussion 
Paper and Request for Feedback. Accessed January 
3, 2024. https://www.fda.gov/downloads/
medicaldevices/deviceregulationandguidance/
guidancedocuments/ucm514737.pdf.

 70. U.S. Food and Drug Administration. FDA Releases 
Artificial Intelligence/Machine Learning Action 
Plan. Published January 12, 2021. Accessed January 
3, 2024. https://www.fda.gov/news-events/
press-announcements/fda-releases-artificial-
intelligencemachine-learning-action-plan

 71. U.S. Food and Drug Administration. Digital Health 
Software Precertification (Pre-Cert) Pilot Program. 
Published September 26, 2022. Accessed January 
3, 2024. https://www.fda.gov/medical-devices/
digital-health-center-excellence/digital-health-
software-precertification-pre-cert-pilot-program

 72. U.S. Food and Drug Administration. Developing 
the Software Precertification Program: Summary 
of Learnings and Ongoing Activities: 2020 Update. 
Accessed May 27, 2025. https://www.fda.gov/
media/142107/download

 73. U.S. Food and Drug Administration. Digital Health 
Innovation Action Plan. Accessed January 3, 2024. 
https://www.fda.gov/media/106331/download

 74. IMDRF Software as a Medical Device (SaMD) 
Working Group. Software as a Medical Device: 
Possible Framework for Risk Categorization and 
Corresponding Considerations. Published online 
2014. Accessed January 3, 2024. https://www.
imdrf.org/sites/default/files/docs/imdrf/final/
technical/imdrf-tech-140918-samd-framework-risk-
categorization-141013.pdf

 75. U.S. Food and Drug Administration. Marketing 
Submission Recommendations for a Predetermined 
Change Control Plan for Artificial Intelligence/
Machine Learning (AI/ML)-Enabled Device 
Software Functions. Accessed May 27, 2025. 
https://www.fda.gov/regulatory-information/
search-fda-guidance-documents/marketing-
submission-recommendations-predetermined-
change-control-plan-artificial

 76. U.S. Food and Drug Administration. 
Considerations for the Use of Artificial Intelligence 
To Support Regulatory Decision-Making for Drug 
and Biological Products. Accessed April 22, 2025. 
https://www.fda.gov/regulatory-information/
search-fda-guidance-documents/considerations-
use-artificial-intelligence-support-regulatory-
decision-making-drug-and-biological

 77. Danish Medicines Agency. Suggested criteria 
for using AI/ML algorithms in GxP. Published 
March 8, 2021. Accessed May 27, 2025. https://
laegemiddelstyrelsen.dk/en/licensing/supervision-
and-inspection/inspection-of-authorised-phar 
maceutical-companies/using-aiml-algorithms-in 
-gxp/

 78. Guendouzi BS, Ouchani S, EL Assaad H, EL 
Zaher M. A systematic review of federated learning: 
Challenges, aggregation methods, and development 
tools. Journal of Network and Computer Applications. 
2023;220:103714. DOI: https://doi.org/10.1016/j.
jnca.2023.103714

 79. Clusmann J, Kolbinger FR, Muti HS, et al. The 
future landscape of large language models in 
medicine. Communications Medicine. 2023;3(1):141. 
DOI: https://doi.org/10.1038/s43856-023-00370-1

 80. Park J, Fang Y, Ta C, et al. Criteria2query 3.0: 
Leveraging generative large language models for 
clinical trial eligibility query generation. DOI: 
https://doi.org/10.2139/ssrn.4637800

 81. Nievas M, Basu A, Wang Y, Singh H. Distilling 
large language models for matching patients 
to clinical trials. J Am Med Inform Assoc. 
2024;31(9):1953–1963. DOI: https://doi.
org/10.1093/jamia/ocae073

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/qualification-process-drug-development-tools-guidance-industry-and-fda-staff
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/qualification-process-drug-development-tools-guidance-industry-and-fda-staff
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/qualification-process-drug-development-tools-guidance-industry-and-fda-staff
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/qualification-process-drug-development-tools-guidance-industry-and-fda-staff
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/drug-development-tool-qualification-process-transparency-provisions
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/drug-development-tool-qualification-process-transparency-provisions
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/drug-development-tool-qualification-process-transparency-provisions
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/drug-development-tool-qualification-process-transparency-provisions
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program
https://www.fda.gov/drugs/drug-development-tool-ddt-qualification-programs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program
https://www.fda.gov/drugs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program-submission-process
https://www.fda.gov/drugs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program-submission-process
https://www.fda.gov/drugs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program-submission-process
https://www.fda.gov/drugs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program-submission-process
https://www.fda.gov/drugs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program-submission-process
https://www.fda.gov/drugs/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program/innovative-science-and-technology-approaches-new-drugs-istand-pilot-program-submission-process
https://www.fda.gov/media/142478/download
https://www.fda.gov/media/142478/download
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/digital-health-technologies-remote-data-acquisition-clinical-investigations
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/digital-health-technologies-remote-data-acquisition-clinical-investigations
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/digital-health-technologies-remote-data-acquisition-clinical-investigations
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/digital-health-technologies-remote-data-acquisition-clinical-investigations
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm514737.pdf.
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm514737.pdf.
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm514737.pdf.
https://www.fda.gov/news-events/press-announcements/fda-releases-artificial-intelligencemachine-learning-action-plan
https://www.fda.gov/news-events/press-announcements/fda-releases-artificial-intelligencemachine-learning-action-plan
https://www.fda.gov/news-events/press-announcements/fda-releases-artificial-intelligencemachine-learning-action-plan
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-pilot-program
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-pilot-program
https://www.fda.gov/medical-devices/digital-health-center-excellence/digital-health-software-precertification-pre-cert-pilot-program
https://www.fda.gov/media/142107/download
https://www.fda.gov/media/142107/download
https://www.fda.gov/media/106331/download
https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-140918-samd-framework-risk-categorization-141013.pdf
https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-140918-samd-framework-risk-categorization-141013.pdf
https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-140918-samd-framework-risk-categorization-141013.pdf
https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-140918-samd-framework-risk-categorization-141013.pdf
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/marketing-submission-recommendations-predetermined-change-control-plan-artificial
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-use-artificial-intelligence-support-regulatory-decision-making-drug-and-biological
https://laegemiddelstyrelsen.dk/en/licensing/supervision-and-inspection/inspection-of-authorised-pharmaceutical-companies/using-aiml-algorithms-in-gxp/
https://laegemiddelstyrelsen.dk/en/licensing/supervision-and-inspection/inspection-of-authorised-pharmaceutical-companies/using-aiml-algorithms-in-gxp/
https://laegemiddelstyrelsen.dk/en/licensing/supervision-and-inspection/inspection-of-authorised-pharmaceutical-companies/using-aiml-algorithms-in-gxp/
https://laegemiddelstyrelsen.dk/en/licensing/supervision-and-inspection/inspection-of-authorised-pharmaceutical-companies/using-aiml-algorithms-in-gxp/
https://laegemiddelstyrelsen.dk/en/licensing/supervision-and-inspection/inspection-of-authorised-pharmaceutical-companies/using-aiml-algorithms-in-gxp/
https://doi.org/10.1016/j.jnca.2023.103714
https://doi.org/10.1016/j.jnca.2023.103714
https://doi.org/10.1038/s43856-023-00370-1
https://doi.org/10.2139/ssrn.4637800
https://doi.org/10.1093/jamia/ocae073
https://doi.org/10.1093/jamia/ocae073


Geraci et al: Current Opportunities for the Integration and Use of AI/ML in Clinical Trials Art. 8, page 15 of 15

 82. Datta S, Lee K, Paek H, et al. AutoCriteria: 
a generalizable clinical trial eligibility criteria 
extraction system powered by large language 
models. J Am Med Inform Assoc. 2024;31(2):375–
385. DOI: https://doi.org/10.1093/jamia/ocad218

 83. Beattie J, Neufeld S, Yang D, et al. Utilizing 
Large Language Models for Enhanced Clinical 
Trial Matching: A Study on Automation in Patient 
Screening. Cureus. 2024;16(5):e60044. DOI:  
https://doi.org/10.7759/cureus.60044

 84. Moses C, Qorri B, Amruth B, et al. Small 
Patient Datasets Reveal Genetic Drivers of Non-
Small Cell Lung Cancer Subtypes Using Machine 
Learning for Hypothesis Generation. Explor Med. 
Published online October 2023. DOI: https://doi.
org/10.37349/emed.2023.00153

 85. Tabassi E. Artificial Intelligence Risk Management 
Framework (AI RMF 1.0). Published online 
January 26, 2023. DOI: https://doi.org/10.6028/
NIST.AI.100-1

How to cite this article: Geraci J, Rao P, Grandinetti C, Qorri B, Nadolny P, Ayalew K, Bregnhøj L, Edwards L, Hofmann K, Khozin 
S, Schaltenbrand N, Stemmler T, Yeomans A, Zambas D, Khin NA. Current Opportunities for the Integration and Use of AI/ML in 
Clinical Trials: Good Clinical Practice Perspectives. Journal of the Society for Clinical Data Management. 2025; 5(1): 8, pp. 1–15. 
DOI: https://doi.org/10.47912/jscdm.426

Submitted: 06 March 2025            Accepted: 16 May 2025            Published: 05 June 2025

Copyright: © 2025 SCDM publishes JSCDM content in an open access manner under a Attribution-Non-Commercial-ShareAlike 
(CC BY-NC-SA) license. This license lets others remix, adapt, and build upon the work non-commercially, as long as they credit SCDM 
and the author and license their new creations under the identical terms. See https://creativecommons.org/licenses/by-nc-sa/4.0/.

Journal of the Society for Clinical Data Management is a peer-reviewed open access 
journal published by Society for Clinical Data Management. OPEN ACCESS 

https://doi.org/10.1093/jamia/ocad218
https://doi.org/10.7759/cureus.60044
https://doi.org/10.37349/emed.2023.00153
https://doi.org/10.37349/emed.2023.00153
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.6028/NIST.AI.100-1
https://doi.org/10.47912/jscdm.426
https://creativecommons.org/licenses/by-nc-sa/4.0/

	Introduction
	Overview of AI/ML Approaches and Their Role in Global Clinical Trials
	Exploring the Application of AI/ML in Clinical Trials: Seven Real-World Use Cases
	Case 1: Smart Data Query
	Case 2: Addressing Data Attributability Challenges in Wearable Devices Using AI/ML
	Case 3: Enhancing Protocol Deviation Trending
	Case 4: Use of External Control Arms
	Case 5: Streamlining the Complaint Handling Process with ML Algorithms
	Case 6: AI for Patient Stratification in the Diagnosis Process
	Case 7: AI-Enhanced Patient Enrichment for Placebo and Drug Response

	Challenges Associated with the Use of AI/ML in Clinical Trials
	Ethical Considerations for Trustworthy AI in Clinical Trials
	Good Machine Learning Practices in Clinical Development
	Regulatory Considerations for the Use of AI/ML in Clinical Trials
	Future Directions of the Use of AI/ML in Clinical Trials
	Conclusion
	Disclaimer
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Table 1
	Table 2

